2) order
[英]['ɔ:də(r)] [美]['ɔrdɚ]
「或」运算;或算子
3) operator,logical
「互斥或」算子
4) almost isometric operator
强(或弱)几乎等距算子
5) XOR
异或运算
1.
A Way of Blind Watermarking Embedding and Detection Based on XOR and Amalgamation;
基于异或运算和图像融合的盲数字水印嵌入和检测方法
2.
To solve the problem of taking surplus of memory in swapping two variables using the third variable,the methods of arithmetic algorithm,swapping of boolean type variables,XOR and negated XOR are suggested.
针对采用第三变量两变量值的交换占用多余内存的不足 ,提出算术运算法、布尔型变量的交换法、异或运算法和异或运算取反法等 4个免用第三个临时变量的两变量值交换方法 ,并分析这些方法的优缺
3.
Firstly,using XOR operator for the data from the tag frame burst,and then in accordance with the results of the XOR operator to decode,finally in accordance with the decoded data to determine the start and the end frames.
首先对来自标签的突发数据帧进行异或运算,然后根据异或运算结果解码,最后根据解出码判断数据帧的开始与结束。
6) Exclusive-OR Algorithm
异或算泫
补充资料:Cauchy算子
Cauchy算子
Caudiy operator
Ca吐hy算子【Ca血hyOI界口tor;KO山“onepaTopl 常微分方程组 戈=f(t,x),x任律(1)的Q以为y算于是依赖于两个参数0和!的算子入叨,;):R”~r,对系统(l)的任何解x(t)在点t=:的值给定的情况下,它给出此解在点t=0的值 X(8,,)x(,)=x(8). 如果(l)为一线性系统,即 交=A(t)x,(2)其中A(·)是(“,刀)~Hom(r,r)(或求(“,方)~Hom(C”,C”))的一个映射,在每个区间内可和,那么对任何0,“(“,脚,Q以为y算子是一个r~r(或C”~C”)的非奇异线性映射,并且对任何0,:,叮E(:,口),它满足 X(8,8)=I,X(6,,)二X一I(,,6), X(8,刀)X(,,,)=X(6,,)和不等式,,·‘。r),,毛一…于,,一,}dt…(方程(3)对满足Caucll)问题解的存在和唯一性条件的J「线性系统(l)也.是成立的,只要对其中描述的算子的定义域作一些必要的规定.)系统 丫互A(t林+h(r)的通解是用系统叹)的ouch}]算护X(白,:)由常数变易(vana加nofcortstallts)公式 x“)一X(‘,‘)‘(:)+jX(‘·口)h(口)do表示的其中h(·)是一个在每个区间上可求和的映身、全 (a,尸,*R月(或一a方)一+e) 系统(2)的0 ochy算子满足口八抽此」尤1训「件Jc以面公式(Lio咖lle一() strogl花ldski form沮a) 夕 det‘(“,,)一expj‘r”(。“安,其中trA(七)是算子4(七)的迹. 系统(l)的(奴uchy算子X(O,:)在点x任r的导数等于系统(l)沿着解天(t)的变分方程系统的心uc场算子,其中I(t)在t=:处的值为关(基干这样的假定,即对以口和下为端点的区间内所有的t,x(t)的图形落在区域G〔R耐’内,使得厂为在G内具有连续导数的连续映射G一R找这是判断解妙却停的可禅件(di玉此”-tiabillty of the solutK,n俪th喂1狱!tto此initial耐优)定理的一种表示). 对常系数日(t)二A)的线性系统‘2),Quclly算 户由 X(夕,丁)exP((6一下洲)(4)定义(给定了线性算子B,exPB定义为艺鑫。矛/划;采用另一种方法,置口=T十飞,可通过式(4)定义expA).由(4)明显看出,Cauclly算子仅依赖于参数的差口一:: 万(口十I,下十t)火(口,幼.这方程是系统自治性的结果一--一个适合于1每个自治系统(如tono仃l(’uss声tern) 一、二[(x),x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条