说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 右可逆算子
1)  right-invertible operator
右可逆算子
2)  right invertible operator pair
右可逆算子对
1.
Secondly,an application is given about the right invertible operator pair(A,B).
利用算子论的初等方法,研究右可逆算子对(A,B)的等价刻划及其应用。
3)  right inverse operator
右逆算子
4)  invertible operator
可逆算子
5)  left invertible operator
左可逆算子
1.
The stability of the left invertible operators under the linear operation and some perturbation questions are discussed in this paper,and an example is given to explain that R(A)∩R(B)={0} is not necessary so that λA+B is also a left invertible operator for λ∈C when A and B are left invertibl
主要讨论了 Banach空间上左可逆算子在线性运算下的稳定性及一些摄动问题 ,并通过反例证明了对于 Banach空间上的左可逆算子 A和 B,R(A)∩ R(B) ={0 }不是 λA+B( λ∈C)为左可逆算子的必要条件 。
6)  Drazin invertible operator
Drazin可逆算子
补充资料:可逆与不可逆
      一切客观过程、特别是基本物理化学过程变化的顺序性。前者是指过程的可反演性,后者是指过程的不可反演性。
  
  严格的物理学意义上的可逆性是指时间反演,即过程按相反的顺序进行。在经典力学的运动方程中,把时间参量 t换成-t,就意味着过程按相反的顺序历经原来的一切状态,最后回到初始状态。但实际上,机械运动过程总是受到各种复杂的随机因素的作用,因此完全的可逆性是不存在的。
  
  严格的物理学意义上的不可逆性概念最初是由经典热力学提出的。它把热的过程区分为可逆的和不可逆的两种,并指出在一个封闭系统的热过程中,热量总是自发地从较热物体传输给较冷物体。热力学第二定律用熵的增加来描述这种不可逆过程。这个定律的统计解释表明,不可逆过程就是封闭的分子系统从有序状态趋向于无序状态。
  
  20世纪40年代以来,系统论、控制论等学科的发展表明,任何开放系统即任何现实存在的系统不仅可以增熵,也可以从外界输入负熵而导致减熵。因此,决不能把时间的方向性唯一地同熵增对应起来,因为事实上也存在着熵减的不可逆过程。非平衡态热力学等新兴学科的发展又进一步表明,任何开放系统,包括我们所观察到的宇宙系统,都可以在远离平衡态的条件下形成某种有序的耗散结构(见耗散结构理论),从而阻止或延缓熵增过程。而且,一个非平衡态的开放系统在一定条件下既可能从无序到有序,也可能从有序到混乱。所以,不可逆过程是复杂的,既可以是熵增过程,也可以是熵减过程,即既可以是退化,也可以是进化。
  
  自然界发展中的进化和退化是不可逆过程的两种形式。虽然自然界中的不可逆过程是绝对的,但有些过程在一定的条件下却表现出相对的可逆性,因此,人类可以创造条件,利用这种近似的可逆性。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条