1) periodic group
周期群
1.
In this paper,the author discusses the order of an element of periodic groups and free groups,studies the order of an element of the additive group of a ring and establishes the concept of the characteristic number of a ring,and gives two popularizations of the order of an element of groups:the order of an element to a subgroup and the order of an element of semigroups.
讨论了周期群与自由群的元素的阶,研究环的加群的元素的阶并建立环的特征数的概念。
2) period semigroup
周期半群
1.
The period semigroup S is a general E minimal semigroup; then S is one of the following: (i) The union of p groups;(ii)A left (right) zero semigroup; (iii) A nil semigroup or nilpotent iff exist n ∈N such that x n=y n fo.
若周期半群S是广义E-极小半群,则S是一些p群的并或一个左(右)零半群(或2个元素的半格)或诣零半群或幂零半群(当且仅当有n∈N,使xn=yn,x,y∈S)。
3) Population cycles
种群周期
4) Inperiod groups
无周期群
5) left periodic group
左周期群
6) right periodic group
右周期群
补充资料:周期群
周期群
periodic group
周期群[拼幼倒阮孚以甲;、,0职,ec翩印扣.a] 一个群(gro叩),它所有的元素都是有限阶的.任意周期Ab日群(Abelian group)可以分解成为相对于不同素数的准素群的直和.关于周期群的有限性条件见周期群的D川画山问题(Bun招ide Probl。刀). 0 .A.11旧a卜匡旧a撰【补注】周期群也称挠群(to巧ion grouP).对于任意群G,它的挠子群(tolsion subgrouP)定义成T(G)一{厂G:日。任N使买=。}.它是正规子群而商群F(G)二GZT(G)为G的无挠商群.T(·)和F(·)都是函子.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条