说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 波速方程
1)  velocity equation of the waves
波速方程
2)  Travelling Wave Rate Equations
行波速率方程
3)  wavelength related rate equations
含波长速率方程组
4)  the first-order velocity-stress wave equations
一阶速度-应力波动方程
1.
To deal with the numerical dispersion problem,by combining the staggered-grid technology with the compact finite difference scheme,we derive a compact staggered-grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media.
针对有限差分数值模拟的频散问题,本文将交错网格技术和紧致差分格式相结合,推导了横向各向同性介质一阶速度-应力波动方程的紧致交错网格差分格式;对比分析了紧致交错网格差分格式、交错网格差分格式以及紧致差分格式的截断误差主项,并利用Fourier误差分析方法分析了上述三种差分格式的近似精度;在此基础上,分别采用上述三种差分格式进行了波场数值模拟。
5)  Rate equations
速率方程
1.
Comments added to the small signal analysis of rate equations of semiconductro lasers;
半导体激光器速率方程组小信号近似的补充说明
2.
Taking into account the energy transfer from Yb~(3+) to Er~(3+), the rate equations are given for Er~(3+) ions.
考虑到铒、镱间的能量转移 ,写出了在这些晶体中的铒离子的速率方程。
3.
Deriving from the rate equationsmodel of fiberlasers,wegetthe explicitexpressions of outputpowers,slope-efficienciesand thresholdsof fiberlasers.
通过推导光纤激光器速率方程 ,得到了光纤激光器输出功率、斜率效率和阈值泵浦功率的解析表达式 。
6)  rate equation
速率方程
1.
Attempt to analysis coherently combined fiber lasers by an optical coupler using rate equations;
利用速率方程分析光纤激光器相干耦合系统的尝试
2.
Study on MacPherson-Srolovitz's grain growth rate equation with Monte Carlo simulation
MacPherson-Srolovitz晶粒长大速率方程的仿真验证
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条