说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Lagrange定理
1)  Lagrange Theorem
Lagrange定理
1.
Prove Rolle and Lagrange theorems with nestal theorem;
用区间套定理证明Rolle定理、Lagrange定理
2.
The Inverse Theorems of Lagrange Theorem and Taylor Theorem were proved to be valid under some conditions.
研究了Lagrange定理和Taylor定理的逆问题 ,证明了在一定的条件下 ,Lagrange定理和Taylor定理的逆定理成立 ,为更好地利用微分中值定理提供了理论根
3.
From the Lagrange theorem\'s structural of symmetry and bearty,two formulas between the n+1 different point\'s function value and its rank are obtained.
文章从Lagrange定理的对称结构出发,探究得到了函数在n+1个相异点的函数值与其n阶导数之间的两个关系式。
2)  Lagrange Mean Value Theorem
Lagrange中值定理
1.
Some New Proofs of the Lagrange Mean Value Theorem;
对Lagrange中值定理证明方法的讨论
2.
Research into progressiveness of intermediate point of Lagrange mean value theorem
Lagrange中值定理“中间点”的渐进性
3.
General Form of Lagrange Mean Value Theorem
Lagrange中值定理的一般形式
3)  Lagrange multiplier theorem
Lagrange乘数定理
1.
Moreover,by using the Hahn-Banach separation theorem on product spaces,we give Lagrange multiplier theorems on Henig proper efficient solutions of vector optimization problems involving vector-valued maps and set-valued set maps with constraint.
进一步,利用关于积空间的Hahn-Banach分离定理,我们给出了具有限制向量值映照和集值映照的优化问题的Henig真有效解的Lagrange乘数定理。
4)  Lagrange Multiplier Theorem
Lagrange乘子定理
5)  ε-Lagrange multiplier theorem
ε-Lagrange乘子定理
1.
By using the alternative theorem,the ε-Lagrange multiplier theorems were derived.
通过在局部凸拓扑线性空间中引进集值映射向量优化问题的ε-超有效解,在集值映射为内部锥类凸的假设下,利用凸集分离定理建立了关于ε-超有效解的标量化定理,并利用择一定理得到ε-Lagrange乘子定理。
6)  second order Lagrange mean value theorem
二阶Lagrange中值定理
补充资料:函数逼近,正定理和逆定理


函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems

  函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条