1) inductive sequence
归纳序列
2) program induction
程序归纳
3) inductive procedure
归纳程序
1.
Mathematics is a dialectical unity of logic and inductive procedures.
数学是逻辑程序与归纳程序的辩证统一 。
4) inductive ordered set
归纳序集
5) recursive sequence
递归序列
1.
The relation between the iteration of projective function and the linear recursive sequences of order 2 is given.
先给出射影函数的迭代与 2阶线性递归序列的关系 ,进而得到此递归序列与Bernoulli数的一个恒等
6) recurrent sequence
递归序列
1.
This paper proves that the Diophantine equation has only integer solution with the help of the Pell method taking an integer>1 as module to make inconsistency,the natures of recurrent sequences and equivalent Pell equation.
采用对方程取某个正整数M>1为模来制造矛盾的同余法和利用递归序列的性质,以及Pell方程的性质,证明不定方程x3-1=13y2仅有整数解(x,y)=(1,0)。
2.
In this paper,the author has proved, with two method of contradictor recurrent sequences and congruence when modules of some positive integer M>1, that the Diophantine equation x~3+1=19y~2 has only integer solution(x,y)=(1,0).
利用两种初等的方法,即对方程取某个正整数M>1为模来制造矛盾的同余法和递归序列法,证明了不定方程x3 -1=19y2 仅有整数解(x,y)=(1,0),从而进一步的证明了方程x2 -19y2 =-13无整数解;方程x2 -3r2 =-3仅有整数解(1。
3.
With the method of recurrent sequence and congruences,proved that the Diophantine equation x3+1 =37y2has only integer solution(x,y)=(-1,0),(11,±6).
利用递归序列,同余式证明了丢番图方程x 3+1=37y2,仅有整数解(x,y)=(-1,0),(11,±6)。
补充资料:不完全归纳推理
“完全归纳推理”的对称。以关于某类事物中部分对象的判断为前提,推出关于某类事物全体对象的判断做结论的推理。在归纳推理中,完全归纳推理是不多的,不完全归纳推理则是大量的。有两种:(1)简单枚举归纳推理,这是或然性推理;(2)科学归纳推理,这是必然性推理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条