1) Orthonormal solution
再生通解
2) pyrolysis recycle
裂解再生
1.
The article discusses the method to reclaim and reuse waste polyethylene at home and abroad nowadays respectively from three aspects,such as the utilization of direct recycle,the utilization of modified recycle and the utilization of pyrolysis recycle,and it is compared with their recycle and application.
从废旧聚乙烯的直接再生、改性再生和裂解再生三个方面,讨论了国内外处理和再生利用的情况,并对其再生技术与应用做了比较。
3) removing adsorption and generation
解吸再生
1.
This paper also led in multiple layer adsorption, removing adsorption and generation.
该文主要论述在碳素生产过程和相关沥青加工行业中,排放的无组织、弥漫性低浓度沥青烟净化的综合净化治理的设计条件及处理方式,并引入多层吸附,解吸再生,再吸附的循环过程。
4) dissolution and regeneration
溶解再生
1.
Research of cornhusk cellulose dissolution and regeneration in ionic liquids;
玉米秸秆纤维素在离子液体中的溶解再生研究
6) regeneration or degradation
再生或降解
补充资料:通解
通解
general solution
通解【罗.”l州州加;。6川eePe山e。即] 九个常微分方程的方程组 交=f(r,x),x=(x、,…,x。)〔R”,(l)在区域D中的通解是n参向量函数族 x二职(t,C:,“’,C,),(C,,’“,C)任C C=R“,公 *黯关于‘是光滑的,关于参数是连续的,由此毛糊碑参数值可以得到方程组(1)的任何解,其图形处于嘛域G CD内,这里,D CR““是使方程组〔枯史昏爆在和唯一性定理的条件满足的一个区越,;‘存对辉定参数也可取值士的).在几何上,:离程细(帅在区域G中的通解表示这个方程组的完整理盏翰举区域G的不相交积分曲线族. 由方程组(l)在G中的通解可以得到玄个方程组的具有初始条件x(:。)=x「〔(t。,x。)任G)的Ca曲y问题(Q公勿Prob】eln)的解:可n个方程的方程组x0二职(气,C,,…,氏)决定n个参数C,,…,c。的值,然后代人(2).如果x=沙(r,t。,xo)是方程组(l)的满足条件x(t0)二x0((t0,x0)任D)的解,则n参函数族 、‘访(:,:。,二兮,…,x:)是这个方程组在区域D中的通解,并称为浮解的〔城u-吻形术(。坡坷如mofa罗加阁。!以沁n),其中:。是一个固定数,而把对、、、·,式看作参数.如果知道了通解,就可唯一地童建微分方程组:为此,只需从n个关系式(匀和把(2)对亡微分而得到的n个关系式中梢去n个参数Cl,…,C。即可. 对于n阶常微分方程 夕(”)=f(x,梦,y‘,…,夕(”一’)),(3)它在区域G中的通解具有下列n参函数族的形式: y,伞(x,C:,‘二,C,),(C,,…,C。)任C C=R“, (4)由此,适当选取参数值,就能得到方程(3)的具有任意初始条件 y(x。)=,。,,‘(x。)刊。,、二,,‘”一”(x。)二,舌一”, (x。,儿,夕舀,…,夕各一’))。G c=D的解.这里,DCR”十’是使方程(3)的存在和唯一性定理的条件满足的一个区域. 当参数取特定值时,由通解得到的函数称为特解(p刚血lar solul沁n).包含给定方程组(方程)在某个区域中的一切解的函数族并不总能表示为自变量的显函数.这个函数族可以表示为隐函数的形式,这时称为通积分(脚e司示卿间),或者表示为参数形式. 如果一个给定的常微分方程(3)能以闭形式积分(见徽分方程的闭形式积分法(加唤归由n ofdi既比nd习、阅姐由邝incl仍的form)),则通常可以得到形如(4)l的关系式,其中参数是作为积分常数产生的,并且是任意的.(所以常常说:n阶方程的通解含有n个任;掀数一》但是,这样的一个关系式决不总是在使原热翰全。目翔问题的解存在且唯一的整个区域中的通因干胶溉仪 了‘)里、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条