说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 等度连续收敛
1)  convergence of equicontinuous functions
等度连续收敛
2)  Continuous Convergence
连续收敛
3)  equicontinuity
等度连续
1.
Continuity,uniform continuity,uniform convergence and equicontinuity are very important qualities of functions or sequence of functions.
连续、一致连续、一致收敛和等度连续是函数或函数列非常重要的性质。
2.
For the sake of using the non-standard analysis method to study the general mathematics problems,the nonstandard characteristics of topological equicontinuity,equicontinuity and even continuity in the case of enlargement model are given.
为了用非标准分析方法研究一般的数学问题,在扩大模型下,应用单子理论给出了拓扑等度连续。
3.
In this thesis, we study mainly the sensitivity with respect to subshift of finitetype, measure-theoretical sensitivity, measures of scrambled sets, measure-theoreticaleverywhere chaos and measure-theoretical equicontinuity via Furstenberg families.
本文讨论了Furstenberg族意义下的有限型子转移的敏感性、测度理论敏感性、攀援集的测度、测度理论处处混沌与测度理论等度连续等问题。
4)  equicontinuous [,i:kwikən'tinjuəs]
等度连续
1.
Supposed X and Y are both topological vector spaces and X is of the second category, if0 is pointwise bounded, then must be equicontinuous.
设X,Y为拓扑向量空间,X是第二纲的,若AB0逐点有界,则A是等度连续的。
2.
In this paper,use equicontinuous of function sequence obtain the necessary and sufficient condition of the uniform convergence sequence of continuous functions in bounded closed interval,generalize Dini theorem.
判别函数列一致收敛的方法有函数列一致收敛定义、Cauchy一致收敛准则、limn→∞supx∈D|fn(x)-f(x)|=0及Dini定理,本文由函数列的等度连续性,可得出几个有界闭区间上连续函数列一致收敛的充要条件,推广了Dini定理。
3.
In this paper, the following two properties of compact system be proved; (1) A factor of a minimal system is minimal; (2) A factor of an equicontinuous system is equicontinuous system.
证明了紧致系统的2个性质:1)极小系统的因子是极小的;2)等度连续系统的因子是等度连续的。
5)  equi-continuous
等度连续
6)  zero-convergent duration
零收敛延续度
补充资料:等度收敛级数


等度收敛级数
equkoovagent series

等度收敛级数[仰血姗曰g团t泌如;po.ocxo八,川.e-c,P,八。】 收敛的或发散的级数艺二1久和艺二.瓦,二者之差是一个收敛级数,且其和为零:艺二1伙一瓦)=0.如果仅仅是二者之差为收敛级数,则两个级数称为广义等度收敛的(闪山con记吧entin此俪山笙挂祀). 如果气=久(x)和瓦=瓦(x)是函数,例如久,瓦:X~R,其中x是任何集合,R是实数集,则级数Z二:久(x)和艺篡l瓦(x)称为在X上丁攀等摩咚举的(皿而耐y叫山ConVe耳雾nt)〔亡冬丁攀等李呼举的(毗耐y叫山conVe卿nt in the widese几记)),指的是二者之差为X上的一致收敛级数,且其和为零(相应地,仅仅为X上的一致收敛级数). 例.如果区间[一二,川上的两个可积函数在区间IC卜二,兀』上相等,则它们的Fou引吧r级数在每个区间厂cl上是一致等度收敛的,而共扼的Fou〔七r级数在厂上是广义一致等度收敛的. Jl.八.K界rpas哪.撰张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条