1) quotient norm
商范数
2) quotient category
商范畴
1.
For Smash product of semigroup-graded category,we prove that the quotient category(C#S)/S of Smash product C#S of semigroup S graded category C is isomorphic to category C,and the Smash product category(B/S)#S of the quotient category B/S of free semigroup S category B is isomorphic to category B when S is a cancellative semigroup with identity 1.
设S为有单位元1的可消半群,引入半群S-分次范畴的Smash积的概念,分别证明半群S-分次范畴C的Smash积C#S的商范畴(C#S)/S与范畴C同构,以及自由半群S-范畴B的商范畴B/S的Smash积范畴(B/S)#S与范畴B同构。
2.
In this paper , the quotient category of an idempotent completed category C modulo M is proved to be equivalent to the idempotent completed category of the quotient category CM, under the assumption that M is an ideal of the additive category C and the idempotent morphism in C can be lifted, where .
设M是加法范畴C上的理想,若商范畴C/M是幂等可提升的,令M=│a∈Mor(C)│a∈M│,本文证明商范畴C/M与对范畴C/M的幂等完备化范畴C/M是范畴等价的。
3) comercial rules
商事规范
4) commerce safeguard
商业防范
5) commercial norms
商法规范
6) Fan Li, a Scholar Merchant
儒商范蠡
补充资料:Luxemburg范数
Luxemburg范数
Luxemburg nonn
L峨曰血叱范数〔I一血叱~;J如盆c服6yP住肋p-Ma] 函数 ,‘x!.(M,一、{*:*>o,丁、(,一’x(:))‘:‘1}, G这里M(u)是关于正的u递增的偶凸函数, 怒“一’M(u)一忽u(M(u))一,一0,对“>0,M(“)>0,且G是R”中的有界集.此范数的性质曾由W.A.J.h以油比飞〔11作了研究.L~b鸣范数等价于O正ez范数(见0口厄空间(C旧允2 sP创芜)),且 I{x}I(,)簇1 lx}I,蕊2 11 x 11(、).如果函数M(u)和N(u)是互补(或互为对偶)的(见O市口类(Or比zc地”‘、则 ,,·,,(一sun{)·(!,,‘!,“!:,,,,,《一‘,}·如果z‘(t)是可测子集E CG的特征函数,则 !l:二11‘M、-一下尖二一. ““启”‘川M一’(l/n篮‘E)’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条