1) multisymplectic geometry
多辛几何
2) symplectic geometry
辛几何
1.
Construction of Cartesian authentication code from symplectic geometry;
利用有限域上辛几何构作一类Cartesian认证码
2.
Construction of Cartesian authentication codes from symplectic geometry;
辛几何上的Cartesian认证码的构造
3.
The construction of non-Cartesion authentication code from Symplectic geometry;
利用辛几何构作non-Cartesion认证码
3) symplectic geometry method
辛几何法
1.
Theoretical solution for rectangular thick plate with arbitrary boundary conditions by symplectic geometry method;
四边任意支承条件下弹性矩形厚板辛几何法解析解
2.
Solute elastic rectangular thin plate by symplectic geometry method;
求解弹性矩形薄板问题的辛几何法
4) symplectic space
辛几何
1.
The dual equations and conditions of the corresponding boundary are obtained directly in the symplectic space.
在辛几何空间中直接描述正则方程和对应的边条件。
2.
The polar coordinate Hamiltonian system of anisotropic elasticity is used to solve the Jordan canonical form eigen solution for the special eigenvalue in symplectic space which consists of the original variables and their dua.
该文在哈密顿体系下将该问题进行重新求解 ,即利用极坐标各向异性弹性力学哈密顿体系 ,在原变量和其对偶变量组成的辛几何空间求解特殊本征值的约当型本征解 ,从而直接给出该佯谬问题的解析解 。
5) symplectic
辛几何
1.
Dual variables and Hamiltonian function are introduced by variational principle such that a problem is promoted to symplectic geometrical space under the conservative Hamiltonian system.
本文通过变分原理将哈密顿体系引入到小雷诺数空间粘性流体问题中导出一套哈密顿算子矩阵的本征函数向量展开求解问题的方法基于直接法求解流体力学基本方程通过求零本征解及其约当型得到几种常见的基本流动求解非零本征值及本征向量的叠加继可分析流场端部效应从而在该领域用哈密顿体系辛几何空间中研究问题的方法代替了传统在拉格朗日体系欧氏空间分析问题的方
2.
It is thus that the problem is promoted to symplectic geometrical under the conservative Hamiltonian system.
从而在该领域用在哈密顿体系下辛几何空间中研究问题的方法代替了传统在拉格朗日体系欧几里德空间分析问题的方法。
3.
This paper introduces Hamiltonian system to the viscoelastic hollow circular cylinders and redescribes fundamental problem in symplectic system or symplectic equations.
将原问题归结为辛几何空间中的零本征值本征解和非零本征值本征解问题,从而建立了一种有效的分析问题方法和数值方法。
6) pseudo symplectic geometry
伪辛几何
1.
With the basic methods of algebra, a count theorem in pseudo symplectic geometry over a finite field of characteristic 2 is given.
用代数学的基本方法给出了特征数为2的有限域上2v+1维伪辛几何中各类子空间的计数定理。
补充资料:辛几何
见微分流形。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条