1) maximal dessipative operator
极大散逸算子
1.
Gives the concepts of dessipative operators,maximal dessipative operators and mtype dessipative operators, obtains some sufficient and necessary conditions on which that an operator is a dessipative operator (mtype dessipative operator).
引进Banach空间中散逸算子、极大散逸算子和m型散逸算子的概念,给出一个算子为散逸算子(m型散逸算子)的若干充分和必要条
2) dissipative operator
散逸算子
3) mtype dessipative operator
m型散逸算子
1.
Gives the concepts of dessipative operators,maximal dessipative operators and mtype dessipative operators, obtains some sufficient and necessary conditions on which that an operator is a dessipative operator (mtype dessipative operator).
引进Banach空间中散逸算子、极大散逸算子和m型散逸算子的概念,给出一个算子为散逸算子(m型散逸算子)的若干充分和必要条
4) atmospheric escape
大气逸散
5) maximal operator
极大算子
1.
Boundedness of maximal operators in Morrey-type spaces on homogeneous spaces;
齐型空间上Morrey型空间中极大算子的有界特征
2.
V∫_(-1)~1 f(x-γ(t))(dt/t) and the maximal operator M is defined by: Mf(x)=■(1/h)|∫_0~h f[x-γ(t)]dt| For the approximately homogeneous curve γ,the author proves that both H and M are bounded on L~P (R~n),p>1.
∫_(-1)~1f(x—γ(t))(dt/t)相应的极大算子 M 定义为Mf(x)=■(1/h)|∫_0~h f(x—γ(t))dt|对近似齐次曲线γ,我们证得 H 和 M 都在 L~p(R~n)上有界,p>1。
3.
In this paper,we discuss the boundeness of the commutator of the maximal operator.
在齐型空间上Herz空间中,通过范数概念定义了相应的有界平均震荡函数,进而利用调和分析中相关理论讨论了极大算子交换子的有界性,并给出具体证明过程,从而推广了该理论体系。
6) maximal operators
极大算子
1.
Remark on boundedness of maximal operators in homogeneous spaces
齐型空间上极大算子有界性的注记
2.
In this paper,we will discuss boundedness of maximal operators in Morrey spaces,and obtain an equivalent relation between maximal operators M_q and M,that is ‖Mf‖__(L~(p,)(X~+,β))≤C‖f‖__(L~(p,)(X,μ))‖M_qf‖__(L~(p,)(X~+,β))≤C‖f‖__(L~(p,)(X,μ)).
主要讨论了齐型空间上的Morrey空间极大算子的有界性,得到了极大算子Mq与M的一个等价关系,即Mq是Lp,(X,μ)到Lp,(X+,β)有界的等价M的有界性。
补充资料:散逸
1.流散。 2.散失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条