说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 渐进展开式
1)  asymptotic expansion
渐进展开式
1.
There are many methods to get asymptotic expansions for those functions defined by integrals.
摄动方法中求定积分所定义的函数的渐进展开式的各种方法被用来求一类广义振荡积分的近似值 ,而且多数情况下得到的是精确
2)  asymptotic error expansion
渐进误差展开式
3)  asymptotic expansion
渐进展开
1.
The Marangoni convection boundary layer problem was solved by an efficient transformation and asymptotic expansion technique,and the analytical approximate solution to this Marangoni convection was obtained.
通过坐标变换和巧妙引入小参数对速度和温度边界层控制方程组摄动渐进展开,得到了问题的解析近似解。
4)  complete asymptotic expansion
全渐进展开
1.
Wenot only obtain the complete asymptotic expansion for the operators and their derivatives but also discuss the shape preserving properties of the operator.
我们基于加权的BBH-D算子与加Jacobi权的Bernstein-Durrmeyer算子之间的关系,得到了加权的BBH-D算子及其微分的完全渐进展开公式,如下:定理1若[0,+∞)上的有界函数f在点x处2q阶可导,q∈N,x∈(0,+∞),则定理2若[0,+∞)上的有界函数f在点x处2q+r阶可导,qN,x∈(0,+∞),r∈N,特别地取q=1,可得该算子的Voronovskaja型结果如下。
5)  asymptotic expansion
渐近展开式
1.
By using the Lindatedt-Poincare method,introducing the transformation of parameter and eliminating the secular terms in the formal solution,the first order uniformly valid asymptotic expansion is obtained.
讨论了一类二阶弱非线性常微分方程,利用Lindstedt-Poincare法,引入参量变换,消去形式解中出现的长期项,得到了解的一阶一致有效的渐近展开式。
2.
In this paper,the author discusses the multi-layer solution with two special limits in boundary layer of the singularly perturly boundary value problem and obtains uniformly valid zero order asymptotic expansion by using the matching asymptotic expanding method.
利用匹配渐近展开法 ,讨论了奇摄动边值问题中边界层内存在有两个特异极限的多层解 ,得出了奇摄动边值问题的一致有效的零次渐近展开
3.
Under a given assumption, the author of this paper obtained the uniformly powerful asymptotic expansion of M order and made an estimation of the remainder in asymptotic series.
研究拟线性双曲型方程柯西问题,在一定假设下,得到解的M阶一致有效的渐近展开式,并作出余项估计。
6)  asymptotic expansions
渐近展开式
1.
In this paperFwe study thesingular perturbation of nonlinear ddifferential equations with two parameters:y = f(x,y, z, ε,μ),y(1,ε,μ) = a(ε,μ)εy" = F(x,y, z, z_1, ε,μ), z (0,ε,μ) = b(ε,μ)z(1,ε,μ) = c(ε,μ)Under some affropriate conditions, using the theory of differential inequalities, we qet the existence of the solution and its asymptotic expansions which is uniformly valid for all orders unti
本文研究一类含有双参数非线性微分方程组的奇摄动,在适当的假设条件下,利用微分不等式理论,证明了摄动解的存在,并给出了解的直到o(sum from k=0 to n+1 ε~(N+1-K)μ~k)阶的一致有效渐近展开式。
2.
My method is to find the new equations and its solutions from the known equations and its solutions,and to find the asymptotic expansions.
给出一类二阶线性方程的求解公式和解的渐近展开式。
补充资料:渐进式防撞能区
渐进式防撞能区能在发生撞击事故的过程中车身前后部会逐级溃缩,从而吸收掉可能传递到乘客舱的能量。这样乘客舱被显著加固,成为一个有效的生存舱,可以保护乘客免受伤害。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条