1) Bernstein type polynomials
Bernstein型多项式
1.
For Bernstein type polynomials, we use a strong Voronovskaja type expansion and prove a strong type inverse theorem on polynomials approximating continuous function.
对于Bernstein型多项式 ,利用强Voronovskaja型展开 ,证明该多项式逼近连续函数强型逆定理 ,从而用Ditzian Totik模刻画该多项式逼近阶的特征 ,得到了等价刻画定
2.
Using moduli of smoothness of high order, we study the problem derivatives hight order of the Bernstein type polynomials, characterize the derivatives of hight order by the smoothness of function and obtain a equivalence theorem.
利用高阶光滑模研究Bernstein型多项式的高阶导数问题,用函数的光滑性刻画Bernstein型多项式的高阶导数的特征,得到了一个等价定理。
3.
After introducing the linear combination of Bernstein type polynomials, we get the rate of pointwise approximation and inverse theorem, A characterized theorem of approximation is given for the combination.
引进Bernstein型多项式的线性组合算子,研究其点态逼近的速度和逆定理,刻画了它的其逼近特征。
2) Bernstein-Durrmeyer type polynomials
Bernstein-Durrmeyer型多项式
1.
As a generalization of the Bernstein-Durrmeyer polynomials, a kind of Bernstein-Durrmeyer type polynomials defined on the simplex is introduced.
作为Bernstein-Durrmeyer多项式的推广,定义单纯形上的Bernstein-Durrmeyer型多项式。
3) Bernstein polynomial
Bernstein多项式
1.
An adaptive approach based on Bernstein polynomial to predict chaotic time series;
基于Bernstein多项式的自适应混沌时间序列预测算法
2.
Digital image sharing based on Bernstein polynomial
基于Bernstein多项式的数字图像分存
3.
Composition of Bernstein polynomials is an important research topic in computer-aided geometric design.
在计算机辅助几何设计中 ,Bernstein多项式的复合是一个重要的研究课题 。
4) Bernstein polynomials
Bernstein多项式
1.
Two-dimensional Bernstein polynomials on simplex and modulus of continuity;
单纯形上的二元Bernstein多项式和连续模
2.
Two-dimensional Bernstein polynomials over triangle;
三角域上的二元Bernstein多项式
3.
Approximation by Bernstein Polynomials in the Space of Riemann Integrable Functions;
Bernstein多项式对黎曼可积函数的逼近
5) Bernstein-Polynomials
Bernstein-多项式
6) Bernstein-Durrmeyer polynomials
Bernstein-Durrmeyer多项式
1.
Direct and converse theorems for weighted approximation of Bernstein-Durrmeyer polynomials in B_α spaces;
B_α空间中Bernstein-Durrmeyer多项式加权逼近的正逆定理
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。