说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟强半格分解
1)  quasi strong semilattice decomposition
拟强半格分解
1.
The definition of strong semilattice decomposition of semigroups is generalized, the definition of quasi strong semilattice decomposition of semigroups is given, and we prove that a completely regular semigroup is a regular (or right quasinormal) cryptogroup if and only if it is a quasi strong semilattice of completely simple semigroups (also satisfies )).
推广了半群的强半格分解的定义,得到了半群的拟强半格分解,并证明了完全正则半群为群 的正则(或右拟正规)带当且仅当它是完全单半群的拟强半格(且 ))。
2)  KG-strong semilattice decomposition
KG-强半格分解
3)  pseudo-strong semilattice
拟强半格
1.
We prove that this kind of bi-semiring is a pseudo-strong semilattice of multiplicative left zero bi-semiring,and characterize the direct product of this kind of bi-semiring and bi-semiring with a unit element as a pseudo-strong semilattice of bi-semiring.
研究了乘法左正规双半环的结构,且证明了这种双半环是乘法左零双半环的拟强半格,并得出这种双半环和含幺双半环的直积是Lz-双半环的拟强半格。
4)  semilattice decomposition
半格分解
1.
Green s relations are generalized to Green s~-relations and the semilattice decomposition of crypto ■-abundant semigroups is given.
给出了密码■-富足半群的半格分解,利用此分解,证明了■-富足半群为正规密码■-富足半群当且仅当它是完全■-单半群的强半格。
2.
The usual Green relations,*-Green relations are generalized to #-Green relations and the semilattice decomposition of■#-abundant semigroups is given.
将通常的Green关系,*-Green关系推广为#-Green关系,并研究了■#-富足半群的半格分解。
3.
The usual Green relations,*-Green relations were generalized toρ-Green relations and the semilattice decomposition of a kind of semisuperabundant semigroups was given.
通常的Green关系,*-Green关系被推广为ρ-Green关系并研究了半超富足半群的半格分解。
5)  decomposation of L-semilattice
L-半格分解
6)  strong distributive lattice of semirings
半环的强分配格
1.
A necessary and sufficient condition for a quotient semiring of a strong distributive lattice of semirings to be a strong distributive lattice of the quotient semirings of the corresponding semiring is obtained.
给出了半环的强分配格的商半环为其相对应的半环的商半环的强分配格的充要条件。
补充资料:半连续分解


半连续分解
semi-continuous decomposition

半连续分解t翎111心阅恤加曰昭d阴n详反tion;肋日lyllenPe-p,朋oep跳6“en”e],上(下)半连续分解(即详r(fo忧r)se而一eont访uous decomPosition) 一个分解(deComPosition)D,即拓扑空间X的不相交闭覆盖,使得商映射(qUOtieni Inapping)P:X~D是闭(开)的(见开映射(open Tnapping);闭映射(closed mapping)). M.H.B响暇x阳以丽撰自苏华、胡师度译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条