说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟-似变分不等式
1)  quasi-variational-like inequality
拟-似变分不等式
1.
As a consequence,it deduces that the solution sets of most quasi-variational-like inequalities (in the Baire category sense) are stable;and for any quasi-variational-like inequality (satisfying some conditions) there exists at least one essenti.
作为应用,还证明了大多数(在Baire分类意义下)拟-似变分不等式问题的解集是稳定的;每个拟-似变分不等式(满足一定条件)的解集至少存在一个本质连通区。
2)  general quasivariational-like inequalities
拟似变分不等式
1.
Using the two concepts,we study a new class of general quasivariational-like inequalities.
引入η-次微分和η-临近映射两个概念,应用这两个概念研究一类新的拟似变分不等式。
3)  quasi variational inequalities
广义拟-似变分不等式
4)  mixed quasi-variational-like inequality
混合拟似变分不等式
5)  generalized quasi-variational-like inequalities
广义拟似变分不等式
1.
By applying the throrem of equilibrium,without the assumptions of compactness monotone and continuity to the domains of the mappings,a new existence theorem of solutions for generalized quasi-variational-like inequalities were established in locally convex topological vector space.
在局部凸空间中 ,利用平衡点定理 ,在假设定义域非紧且对映射不要求单调型或连续的条件下 ,建立一个新的广义拟似变分不等式解的存在性定理 ,从几个方面改进和推广了一些相应的结果 。
6)  Generalized quasi-variational inequalities
广义-拟似变分不等式
补充资料:Harnack不等式(对偶Harnack不等式)


Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-

【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条