3) nonparametric regression econometric model
非参数计量经济模型
1.
Kernel estimation with variable bandwidth for nonparametric regression econometric models;
非参数计量经济模型的变窗宽核估计
5) disequilibrium econometric model
非均衡计量经济模型
1.
This paper uses co-integration method to determine the starting value of estimation iteration,works on the total quantity of supply and demand by applying disequilibrium econometric model.
以房地产市场供求的非均衡问题为中心,采用协整分析法确定非均衡计量经济模型参数估计迭代的初始值,运用非均衡计量经济模型对我国房地产市场供求总量进行了分析,从定量的角度对房地产市场的非均衡问题进行了研究。
6) nonlinear econometric model
非线性计量经济模型
1.
Some nonlinear econometric models can estimate parameters after being trans formed into linear econometric models by means of variable replacement .
多元线性计量经济模型Y =Xβ+ε可以用普通最小二乘法 (OLS)、加权最小二乘法(WLS)或广义最小二乘法 (GLS)等方法去估计其参数 ,有一些类型的非线性计量经济模型可采用变量代换、对数变换等方法将其转换成线性模型再去估计参数 ,本文将讨论一类非线性计量经济模型Y =h(X ,β) +ε ,在 β的某一特定值处先求h(X ,β)的Taylor展开式 ,然后估计其参数的方法 ;以及在非线性计量经济模型中不仅在模型表达式右边出现参数 ,而且在模型表达式左边也出现参数的情况 ,形如 g(Y ,θ) =h(X ,β) +ε的模型进行讨论 ,特别以广义科比—道格拉斯生产函数模型 lnY+θY =lnγ +α(1-δ)lnK+αδlnL +ε为例说明
补充资料:非参数模型辨识
利用直接记录或分析系统的输入和输出信号的方法估计系统的非参数模型。所谓非参数模型是指系统的数学模型中非显式地包含可估参数。例如,系统的传递函数、频率响应、脉冲响应、阶跃响应等都是非参数模型。非参数模型通常以响应曲线或离散值形式表示。非参数模型的辨识可通过直接记录系统输出对输入的响应过程来进行;也可通过分析输入与输出的自相关和互相关函数(见相关分析法建模),或它们的自功率谱和互功率谱函数(见频谱分析方法建模)来间接地估计。非参数模型是经典控制理论中常用的描述线性系统的数学模型。传递函数反映输入与输出的拉普拉斯变换在复数域上的响应关系,频率响应反映它们的傅里叶变换在频率域上的响应关系,而脉冲响应和阶跃响应则是在时域上的响应关系。它们从不同的方面反映系统的动态特性。非参数模型比参数化模型直观,辨识非参数模型的方法和计算也比辨识参数化模型的简单。脉冲响应可以用直接记录输入脉冲函数的输出响应的方法来辨识;频率响应也可以直接利用单频正弦输入信号的响应来辨识。但是这种直接辨识方法只能应用于无随机噪声的确定性系统。对于有随机噪声的系统或随机输入信号,必须使用相关分析法或功率谱分析方法。随着快速傅里叶变换仪、伪随机信号发生器和相关仪的问世,辨识系统的非参数模型已变得比较容易。但非参数模型应用于实时控制和适应性控制仍不如参数化模型方便。非参数模型在某些情形下,可以转化为参数模型。例如,如果一个系统的传递函数可以表示为有理分式H(s)=K/(a+s),则系统的模型可以用常微分方程y'+ay=ku表示,a与k为待估计的模型参数,这是参数化模型。又如,对于离散系统的权函数序列(离散脉冲响应序列){hi,i=0,1,...},如果在i充分大(如i>N0),而│hi│充分小时,则模型可以表示为并可用最小二乘法给出有穷权函数序列{hi,i=0,1,...N0}的估计。一般说来,由参数模型容易获得非参数的脉冲响应或频率响应,但由非参数模型化为参数模型则要困难得多。
参考书目
P.艾克霍夫著,潘科炎、张永光等译:《系统辨识:状态与系统参数估计》,科学出版社,北京,1980。(P.Eykhoff, Systems Identification, Wiley, London,1974.)
参考书目
P.艾克霍夫著,潘科炎、张永光等译:《系统辨识:状态与系统参数估计》,科学出版社,北京,1980。(P.Eykhoff, Systems Identification, Wiley, London,1974.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条