1) axiom of distance
距离公理
1.
First we define pseudo hyperbolic distance in the set of selfadjoint and commuting operators in the complex Banach space composed by bounded linear operator in complex Hilbert space whose norm are less than 1, then prove pseudo hyperbolic distance meet the condition of axiom of distance and it is not change about transformation φ__S(·) (where S∈B__H) by means of operator function theory.
在复Hilbert空间上的有界线性算子构成的复Banach空间上,对算子范数小于1的交换自伴算子集定义了伪双曲距离,并且利用算子函数论的方法,证明了在此集合上定义的伪双曲距离满足距离公理且它关于变换φS(·)不变(此处S∈BH)。
2) axioms of the distance formulas
距离公式的公理
3) minimum distance
公垂距离
1.
Computing method for determing the minimum distance between non-uniplanar lines;
求解空间两异面直线公垂距离的计算方法
4) distance formula
距离公式
1.
Through summarizing and proving,here are some distance formulae from point in to hyperplane.
总结了n维欧氏空间中点(或向量)到超平面(子空间)的距离的几种求法,证明了两个新的点(或向量)到超平面的距离公式,推出了向量到子空间距离的一个公式,利用矩阵广义逆给出了点(或向量)在超平面上的射影公式。
2.
In general, if T is a trace class operator, then T can be represented as an absolutely convergent series which is consisted of rank one operators in U, and \$T\-1=infi=1R\-i-1 T=i=1R\-i,R\-iU,rank\R\-i=1,i=1R\-i-1<$ In addition, we obtain the distance formula from an arbitrary operator to U.
利用该结果 ,得到了算子到 U的距离公
5) public distance
公众距离
6) physical distance
物理距离
1.
The relationship between physical distance and genetic distance on chromosome 22;
22号染色体遗传距离与物理距离的关系
补充资料:公理化方法(见公理化和形式化)
公理化方法(见公理化和形式化)
axiomatical method
gongllbuafangfa公理化方法化和形式化。(axiomatieal method)见公理
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条