1) finite rational numbers
有限有理数
2) Finite Eletment Data Management System
有限元数据管理
4) finite sequence
有限数列
1.
Pigeon hole principle is used in discussing following question in order to reveal some characters of finite sequence.
为了揭示有限数列的某些性质 ,利用抽屉原理对下面问题进行讨论 ,设x1,x2 ,… ,xn,y1,y2 ,… ,yk2 ∈ { 1,2 ,… ,k} ,并且x1+x2 +… +xn ≥ y1+ y2 +… + yk2 ,则存在≠I { 1,2 ,… ,n} ,≠J { 1,2 ,… ,k2 } ,使 i∈Ixi = j∈Jyi,得出一些结果 主要结果有在零点附近符合某些条件的有限整数数列 ,必存在子数列 ,它的和为零 ;在零点附近都大于零而且符合某些条件的有限整数数列 ,必存在两个子数列 ,它们的和相
5) finite progression
有限级数
1.
The formula of piles deformation is considered as finite progression with unknown numbers which can be solved by introducing the boundary conditions of the tip and base of piles,and then the deformation of piles and soil beside piles can be o btained.
提出分析群桩基础的剪切位移法:设定桩身位移方程为含有未知量的有限级数,利用桩顶、桩端的边界条件求解各未知量,从而得到桩身位移及桩周土位移。
6) Hop-bounded
有限跳数
补充资料:有理数
有理数 rational number 整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零3种数。由于任何一个整数或分数都可以化为十进循环小数,反之,每一个十进循环小数也能化为整数或分数,因此,有理数也可以定义为十进循环小数。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数的大小顺序的规定:如果a-b是正有理数,就称a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集不是稠密的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性,整数集没有这一特性,因为两个相邻的整数之间就没有其他的整数了。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条