1) directed partially ordered group
定向偏序群
1.
In this paper, Hankel operators on directed partially ordered groups are defined.
给出了定向偏序群上Hankel算子的定义,得到了一个有界线性算子为Hankel算子的充要条件。
2) Directed complete partially ordered monoid
定向完备偏序半群
4) partially ordered semigroups
偏序半群
1.
Let(S,·,≤)be partially ordered semigroups.
定义了S的半拟序σ及模σ的半拟链,其次,通过模σ的半拟链将S的半拟序σ扩张为S的另一个偏序≤*,使得(S,·,≤*)是偏序半群,并获得了若干理想的结果。
2.
Let be partially ordered semigroups.
设(S,·,≤)是偏序半群,首先定义了S的半拟序σ及模σ的半拟链,其次,通过模σ的半拟链,将S的偏序≤扩张为≤*,并讨论了(S,·,≤*)是偏序半群的充分条件。
5) quasi-partial ordered group
拟偏序群
1.
Let (G, G_+) be a quasi-partial ordered group such that G_+~0 = G+ ∩G_+~(-1) is a non-trivial subgroup of G.
设G为一个离散群,(G,G_+)为一个拟偏序群使得G_+~0=G_+∩G_+~(-1)为G的非平凡子群。
2.
We construct ordered or quasily ordered groups, partial or quasi-partial ordered groups, and quasi-lattice ordered groups by choosing certain 2 by 2 upper triangular matrices.
利用二阶上三角矩阵分别构造了非交换的序群、拟序群、拟偏序群和拟格序群。
6) partially ordered groups
偏序群
1.
An interesting result is presented as such statements: For a group (G,·), a kind of correspondence can be established between the set of all of the partial orderings (quasi-orderings) which makes the (G,·) be partially ordered groups (or quasi-ordered groups) and the set of all of the quasi-quotient groups on G which is isomorphic to G (or subgroups of G).
通过偏序诱导集的概念 ,建立了一个群上的可使该群成为偏序群的全体偏序结构组成的集合与该群上一类特殊广义商群组成的集合之间的一一对应关系 。
补充资料:偏序群
偏序群
partially ordered group
偏序群l件r血ny耐ered gr仪甲;,acT”,no yUo卯加,en-“朋rPynna] 一个群(grouP)G,在其上给定了一个偏序(par,tial orckr)簇,使得对G中所有元素a,b,x,y,不等式“‘b蕴涵xay簇xby. 偏序群中的集合p二{x“G二x)l}称为G的正锥〔positive cone),或整部分(integral part),并具有性质:l)尸p三尸;2)尸门尸一‘={l};以及3)对所有x日G,义一’尸 xg尸.G的满足条件l)一3)的任意子集尸、导出G上以P为正锥的一个偏序(x簇夕,当且仅当x一,y〔p). 偏序群的例子.带有通常顺序关系的实数加群;由任意集合X到R内的函数群F(X,R),其运算为 (j.+g)(x)=f(x)+g(x),偏序关系为f(夕,如果对所有x任X,.f(x)蕊g(x);一个全序集M的所有自同构关于函数的合成的群A(M),具有序关系职簇沙,如果又明荫川任M,诚m)簇沙(川),其中甲,少‘A(M) 偏序群理论的基本概念有:序同态(见序群(or-dered grouP)),凸子群(eonvex subgrouP),以及Des-cartes积和字典积. 偏序群的重要类有全序群(tola】ly ordered gIUuP)和格序群(lattiee一ordered脚up)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条