说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 有限应变物态方程
1)  finite strain equation of state
有限应变物态方程
2)  finite strain
有限应变
1.
Research on dissipation of excess pore water pressure in one-dimensional finite strain consolidation of soft clays
软黏土层一维有限应变固结的超静孔压消散研究
2.
Using Voigt rule,the matrix formulation of governing equations of finite strain consolidation with Eulerian description is proposed in this paper.
采用Voigt规则建立了欧拉描述的有限应变固结控制方程的矩阵表述形式。
3.
Based on elastoplastic damage model under small strain condition, the model under finite strain condition is developed.
在软土各向异性弹塑性损伤模型的基础上 ,把小应变模型扩展到有限应变模型 ,推导出不排水平面应变条件下的剪切带形成条件 ,分析K0 固结状态下向各异性损伤对剪切带形成的影响 。
3)  finite equation
有限方程
4)  strain limit design method
应变极限状态设计方法
5)  finite element equations
有限元方程
1.
Solving finite element equations is a key step in the numerical simulation of sheet metal stamping.
在板料冲压成形的有限元数值模拟过程中,有限元方程的求解是有限元分析中的一个重要步骤。
2.
The conformability of finite element equations for symmetric and non-symmetric Biot抯 consolidation is discussed in this paper.
论述了对称与非对称的Biot固结有限元方程组间的一致性,发现Biot固结有限元方程组系数矩阵是否对称是与平衡方程中与孔隙水压力有关的项是否进行分部积分有关。
3.
Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem, finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.
基于Biot双相各向异性介质理论和动态问题的哈密顿原理,推导出任意双相各向导性介质中弹性波传播的有限元方程,并给出双相各向异性介质中弹性波有限元方程的数值解法。
6)  finite element equation
有限元方程
1.
Three dimensional finite element equation of damage simulation of large concrete structures;
大体积混凝土结构的损伤仿真有限元方程
2.
Using variational principle, constitutive relations and geometrical relations of functionally graded piezoelectric material, and the boundary conditions of the plates, the finite element equations were deducted.
本文利用变分原理和功能梯度压电材料的本构关系、几何关系、板的边界条件等,推导出功能梯度板的有限元方程。
3.
In this paper, geometric quantity expressions of the finite element equations of Laplacian equation for 2-d quaolric triangle elements and 3-d linear tetrahedron elements are obtained.
利用这种表达式可揭示有限元方程的一些重要的内在性质。
补充资料:应变协调方程
      线性弹性力学中的六个应变分量εij之间必须满足的微分方程。 六个应变分量εij是由三个位移分量导出的,它们彼此之间存在一定的内在联系,这些联系就是应变协调方程。应变协调方程有六个,可以表示为:
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  应变协调方程有下列重要特性:①任何由三个连续可微的位移分量按弹性力学的几何方程导出的一组应变分量,都满足应变协调方程。因此,不满足应变协调方程的应变不可能是从真实位移按几何方程的关系产生的。②上述方程中的任何五个成立,并不意味着第六个一定成立,即六个应变协调方程具有一定的独立性。③任何一个应变分量恒满足的线性微分关系,都可以化为上述六个应变协调方程的线性组合,所以应变协调方程概括了应变分量之间的全部恒等微分关系。④对于单连通的区域,如果给出的应变分量满足上述方程,则可以从位移和应变的关系求得单值、连续的三个位移分量。所以对于单连通区域,应变协调方程概括了应变分量之间的全部必然联系。⑤对于多连通区域,应变协调方程不能概括应变分量之间的全部必然联系。事实上,应变分量之间有一些恒等的积分关系,它们不从属于应变协调方程所表达的微分关系。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条