说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 连分式求值
1)  evaluating the contined fraction
连分式求值
2)  continued fraction interpolation
连分式插值
1.
〗The non-linear regression using the theory of continued fraction interpolation
基于连分式插值理论的非线性回归问题
3)  Thiele-type continued fraction interpolation
Thiele连分式插值
4)  continued fraction rational interpolation
连分式有理插值
5)  vector valued continued fraction
向量值连分式
1.
In the literature related,the GC′ continuity parametric rational circular arc spline has been constructed in the plane by means of vector valued continued fractions interpolants,and the tangent vector of the first knot can be adjusted to preserve the shape of the spline,but the general principle of adjusting the tangent vector has not been given,which is inconvenient for practical use.
有文献表明利用向量值连分式插值,可在平面上构造一种GC′连续的参数有理圆弧样条,并且可通过调整端点切向量使其具有保形性,但没有给出如何调整端点切向量的一般原则,不便于实际应用。
2.
In this paper, a new method is presented for constructing a segment of circular arc in two or three dimension space by use of the vector valued continued fraction, and the center and radius of the circular arc are also given.
文章利用向量值连分式构造的参数有理函数快速、简便地表示平面及空间里过不在同一条直线上任意 3点的一段圆弧 ,并给出了它的圆心坐标及半径。
6)  vector valued continued fractions
向量值连分式
1.
New convergence criterion for vector valued continued fractions;
一个新的向量值连分式收敛准则
2.
In the literature related,the GC1 continuity parametric rational circular arc spline has been constructed in the plane by means of vector valued continued fractions interpolants,but the general algorithm about the parametric rational circular arc spline in the three-dimensional space has not been given.
有文献表明可利用向量值连分式插值,在平面上构造一种GC1连续的参数有理圆弧样条,并且给出了保形性条件,但没有给出构造空间参数有理圆弧样条的算法。
补充资料:不定极限和不定式的求值


不定极限和不定式的求值
ndefinite limits and expressions, evaluations of

  不定极限和不定式的求值〔加划耐妞h川七田日巴甲吧..”,曰川.舫.昭Of:”eoup叭e几e.HocTe盆Pac即研Hel 计算由一些公式给出的函数的极限的方法,当把自变量的极限值形式地代人这些公式时,它们将失去意义,即成为下列形式的表达式: 竺竺。.co二一二00二。.俨. 0’的不可能判断所要求的极限是否存在,即使存在,也不可能直接求出.不定式求值的基本工具是肠殉r公式Clby】or fonnl日a),利用毛w】or公式可以分出函数的主部.例如,在0/0型不定式的情况下,为了求出极限 枷f(x) x一,。g(x)’其中 恩f(x)艳恐。(x)一。,在点x。的邻域内由肠ylor公式表示函数f和g(如果可能的话),直到第一个非零项: f(x)=a(戈一x。)”+o((x一x。)介),a护0, g(x)=b(x一义。)用+o((x一x。),),b笋o;结果求得极限 fo,女口果。>m,limZ土些吮二华腼(、一xn)。一之早.如果。=m,咒口(x、‘牛讥、-一。产}b,,。Z一 七的,如果。  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条