1) F-complement
F-补
2) F-s-supplement
F-s-补
1.
If K≤G such that HK=G and K/HG∩K∈F,then H is called F-s-supplemented in G.
K称为H在G中的F-s-补。
2.
We characterize the structure of finite group G under the assumpations that minimal subgroups of Fitting subgroup and generalized Fitting subgroup of G are F-s-supplemented,and have the following new results: Let F be a saturated formation containing U and let G be a finite group.
利用群G的F itting子群、广义F itting子群的极小子群F-s-补条件刻划群G的结构,得到新的结果,即:设F是含U的饱和群系,G是一有限群,则G∈F的充分必要条件是存在G的可解正规子群N(或正规子群N)使得G/N∈F且F(N)(或F*(G))的所有素数阶子群在G中均有超可解-s-补。
3.
Using F-S-supplement of the minimal subgroups and the minimal counterexample method,the p-nilpotency of finite groups is investigated.
利用极小子群的F-S-补及极小阶反例法,研究有限群的p-幂零性问题,得到有限群为p-幂零的若干新判据。
3) F-S-complemented
F-S-可补
5) F-implicit complementarity problems
F-隐补问题
1.
Strong vector F-implicit complementarity problems and corresponding variational inequalities;
强向量F-隐补问题及相应的变分不等式
6) F-S-supplemented subgroup
F-S-可补子群
1.
The purpose of this paper is to study the influence of F-s-supplemented subgroups and Q-supplemented subgroups on the structure of finite groups such as p-nilpotency,supper solvability.
本文的主要目的是研究F-s-可补子群和Q-可补子群对有限群结构(p-幂零性,超可解)的影响。
补充资料:(订补)简易备验方
(订补)简易备验方
方书。又名《十竹斋订补万病验方》、《订补验方》。16卷。明胡正心(无所)、胡正言(曰从)编辑。初辑于崇祯四年(1631年),订补并刊于崇祯十四年(1641年)。按病因、病证分为中风、伤寒、瘟疫、暑证、热燥、火证、湿痹、脾胃等57门,汇录各科单验方。卷首附“养生篇”,卷末为畜病门。现存十竹斋初刻巾箱本。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条