1) series representation
级数表示
1.
An application of series representation of real numbers to set theory;
实数的级数表示在集合论中的一个应用
2) representation of Fourier series
Fourier级数表示
1.
When distribution function of random variable X is N order uniform step,the obtained results in the paper are as follows,(1)the representation of Fourier series for function of random variable f(X);(2) the representation of Fourier series for conditional mathematical expectation E(Y|X).
在随机变量X的分布函数为N阶均匀阶跃函数的情形下,获得了:(1)随机变量函数f(x)的Fourier级数表示;(2)条件数学期望E(Y|X)的Fourier级数表示。
3) Principal series representation
主级数表示
4) Dicrete series re presentation
离散级数表示
5) representation class
表示级
6) Layer &Rank Expression
层级表示
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条