说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 历史拓扑
1)  history topology
历史拓扑
1.
The model which is based on history topology and descriptors.
针对已有时空数据模型在表达时空信息上存在的问题,提出基于一个新的历史拓扑和描述子的时空数据模型STORM。
2)  topological ergodicity
拓扑遍历
1.
Optimization on ship design planning by topological ergodicity;
采用拓扑遍历方法优化船舶设计计划
2.
It has been proved that the topological ergodicity of set-valued map f is equivalent to the topological double ergodicity of f by studying the relation between the motion of points and the motion of sets;moreover,a compact system has been constructed which has zero topological entropy and no chaotic property,but the induced set-valued map.
通过研究点运动与点集运动的关系,证明了集值映射-f拓扑遍历与f拓扑双重遍历等价并构造一个零拓扑熵且不具有任何混沌性质的紧致系统,其诱导的集值映射-f有无穷拓扑熵且分布混沌,表明集值离散动力系统的拓扑复杂性可以远远大于原系统。
3.
The paper gives the equivalent conditions when a dynamical system is topological(double) ergodicity,and discusses the relationship between topological ergodicity and topological mixing as well as topological transitivity.
本文给出了动力系统f是拓扑遍历、拓扑双重遍历的等价条件,讨论了拓扑(双重)遍历与拓扑可迁、拓扑混合的关系,研究了拓扑遍历系统的混沌性态。
3)  topologically ergodic
拓扑遍历
1.
In terms of continuous maps of tree,topologically mixing and toally topologically transitive are identical,and topologically ergodic and topologically transitive are identical.
指出:对树上连续自映射而言,拓扑混合等价于完全拓扑可迁,拓扑遍历等价于拓扑可迁,拓扑混合等价于拓扑弱混合。
2.
In this paper,it was proved that for a given m≥2,f~(m)is topologically ergodic(resp.
本文证明了:对任意m≥2, f~(m)是拓扑遍历(强拓扑遍历)的当且仅当f~(m)=f~(m)是拓扑遍历(强拓扑遍历)的。
3.
By constructing a minimal sub-shift,it is obtained that σ▕ Λ is topologically ergodic,topologically doubly ergodic and Xiong-chaotic.
在此基础上,采用构造性的方法构造了一个特殊的极小子转移,由此得出在符号空间上的一类极小子转移σ▕Λ是拓扑遍历的、拓扑双重遍历的和熊-混沌的。
4)  topologically double ergodic
拓扑双重遍历
5)  topological ergodic mixing
拓扑遍历混合
6)  the changing and the development
历史流变与拓展
补充资料:拓扑结构(拓扑)


拓扑结构(拓扑)
topologies 1 structure (topology)

拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条