1) correction for ship motion
船体运动校正
2) Motion Correction
运动校正
1.
Local motion correction for functional magnetic resonance images
基于局部空间数据的功能磁共振图像运动校正
3) ship motion
船体运动
1.
To overcome this limititation, Dai Yangshan calculates hull bottom slamming loads and bending moments in the time domain by combining the strip theory, which is used to predict ship motion, with th.
针对这一局限,戴仰山将预报船体运动的切片理论和Ochi底部砰击试验所提出的经验公式相结合在时域中计算某一给定波列作用于船体产生的底部砰击荷载和砰击弯矩。
4) ship gesture correction
船体姿态校正
5) Sports Boat
体育运动船
6) correction for moving gesture of the ship
船运动姿态纠正
补充资料:船体强度
船体强度
hull strength
ehuanti qiangdu船体强度(hullstrength)舰艇的船体结构在规定条件下抵抗各种外力不致造成严重变形或破坏的能力。按船体结构的整体或某一局部的受力状况,分为总体强度、局部强度、横向强度等。以舰艇航行状态为基本工况进行校核;必要时以坐坞或下水工况进行校核,分别称为坐坞强度和下水弓虽度。 总体强度,包括总纵强度和总扭转强度。总纵强度,是船体结构抵抗总纵弯曲的能力。作用在整个船体上的重力、浮力、波‘浪水动力和惯性力等,使船体像自由漂浮的空心梁一样产生总纵弯曲。有船体中段上拱而首尾部下垂和船体中段下垂而首尾部上翘两种状态。前一状态造成甲板纵向构件受拉,船底纵向构件受压;后一状态则相反。在总纵弯曲时,船体中受压的构件,常因过度受压而产生屈曲,大大降低船体抵抗总纵弯曲的能力。分析船体中受压构件是否屈曲及其屈曲后能抵抗外力的剩余能力,是分析船体总纵强度的重要内容。总扭转强度,是船体结构整体抵抗扭转的能力。当船体斜向处于波浪中,船体首尾部的波浪表面具有不同的倾斜方向;或首尾载荷置于不同的舷侧时,都会使重力与浮力分布不均匀,引起船体扭转。通常长大甲板开口的船只,在设计时须重视保证总扭转强度。一般开口较小的舰艇,其总扭转强度,通常是有保证的。局部强度,是不涉及船体总纵强度的局部结构抵抗外力的能力。几乎包括船体的每一局部结构和构件,如板架强度、舱壁强度、上层建筑强度、炮座加强结构强度等。局部强度不足,在多数情况下仅导致船体局部结构破坏;但有时局部破坏,也会造成全船断裂。横向强度,是船体结构抵抗横向弯曲的能力。在船体结构中,横梁、肋骨、肋板以及由它们构成的肋骨框架和横舱壁等,都是保证横向强度的主要构件。对船形比较瘦长的水面舰艇,如船体总纵强度有充分保证,则横向强度也可得到满足。 滑行艇船体强度,主要是能承受巨大冲击力。在这一外力作用下,可能产生总纵弯曲和局部结构特别是艇体底部破坏。潜艇船体须承受很大的静水压力,这就决定其耐压艇体采用环形肋骨加强的圆柱壳和圆锥壳。这种壳体须具有在均匀外压力作用下的强度和稳定性,以保证潜艇水下航行和机动的安全。 舰艇在航行和战斗过程中,经常承受周期干扰力或瞬时冲击力,如主、辅机和螺旋桨工作引起的不平衡力,火炮发射时的气浪和后坐力,空中、水下爆炸的冲击波压力等。这些力会产生全舰或局部的周期或短时振动,造成船体构件的破损。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条