1) ε-super efficiency
ε-超有效性
1.
In this paper, we discuss ε-super efficiency of vector optimization problems with set-valued maps in normed vector spaces.
本文在赋范向量空间中讨论集值映射向量优化问题的ε-超有效性,在锥-半连续和广义锥-次类凸的假设条件下,获得了ε-超有效点(解)集的连通性结果。
2) ε-super efficient solution
ε-超有效解
1.
In locally convex linear topological spaces,the ε-super efficient solution for vector optimization with set-valued maps was introduced.
通过在局部凸拓扑线性空间中引进集值映射向量优化问题的ε-超有效解,在集值映射为内部锥类凸的假设下,利用凸集分离定理建立了关于ε-超有效解的标量化定理,并利用择一定理得到ε-Lagrange乘子定理。
2.
In this paper,we study the connectedness of ε-super efficient solution set of vector optimization set-value mapping in normed linear spaces.
研究了赋范线性空间中集值向量优化问题ε-超有效解集的连通性,并证明了目标映射为锥拟凸的向量优化问题的ε-超有效解集是连通的。
3.
This paper establishes and proves the saddle points and duality theorems for ε-super efficient solution of vector optimization with set-valued maps, under the assumption that the set-valued maps is nearly generalized cone-subconvexlike, by utilizing the scalarization and Lagrange multiplier theorem for ε-super efficient solution.
在集值映射是近似广义锥次似凸的假设下,利用ε-超有效解的标量化和Lagrange乘子定理,建立和证明了关于ε-超有效解的鞍点和对偶定理。
3) ε-super efficient point
ε-超有效点
4) ε-(weakly) efficiency
ε-(弱)有效性
5) ε-proper efficiency
ε-真有效性
6) ε-efficient solution
ε-有效解
1.
In this paper,we provide a necessary condition for ε-efficient solutions of Multiobjective Programming(MOP),we mainly study six well-know scalarization methods for the MOP and establish the corresponding relationships between ε-efficient solutions and ε-optimal solutions when solving(MOP) and scalarized problem(SOP
考虑多目标优化问题中ε-有效解存在的必要条件。
补充资料:超有效估计量
超有效估计量
upereffitient estimator $, hyperefficient estimator
超有效估计量f匀那曰re伍d印t巴血舀奴或h只尤肥伍cjentestilnator:cBepx,帅e俐Bu明o”eUKal 术语“超有效估计量序列”的通用简称,指比未知参数的相合最大似然估计量序列好(更有效)的、相合渐近正态估计量序列. 设X,,二x,是取值于样本空间(王,才,尸,)(口〔0)的随机变量.假设对于分布族{尸。},存在参数口的相合最大似然估计量J。一J。(x、,…,xn)的序列冲。}.其次,设{兀圣是参数口的渐近正态估计量瓦二兀(Xl,…,X,.)的序列.假如对于一切0〔0、有 、〔,,。。(工,一。),z、不共, 厂一1一fIL,-一‘·”I(的’其中I(的是F泪阮r信息量(Fisher~unt ofi刊陌~-tion),并且至少在一个点口‘(0“O),满足严格不等式 *。。.【n(兀一。·)2]<一早万,(.) I(口)则称序列{下,圣关于平方损失函数为超有效的(supe卜efficient),而使(*)式成立的点扩称为超有效点(pointof su详reffieiell卿)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条