说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性分形理论
1)  non-linear fractional theory
非线性分形理论
2)  nonlinear bifurcation theory
非线性分岔理论
3)  non-linear large-deformation theory
非线性大形变理论
4)  nonlinear theory
非线性理论
1.
An evaluating model of slope stability based on nonlinear theory;
基于非线性理论的边坡稳定性评价模型
2.
Vibration prediction and reduction research on platform refrigeration system based on nonlinear theory
基于非线性理论的海上平台空调机组振动预测与减振研究
3.
A nonlinear theory in environmental science was suggested with an integrated analysis and theoretical judgement based on previous work.
在前人和本课题研究成果的基础上,通过综合分析和理论推断,提出了环境科学的非线性理论概念,并以若干实例阐述了非线性理论在环境科学研究和污染控制中的指导意义。
5)  non linear theory
非线性理论
1.
Firstly,the non linear theory concerned is introduced.
首先介绍了相关的非线性理论 ,然后预测了鲁克沁构造带的孔隙度和渗透率 ,并对预测结果进行了分析 。
6)  non-linear theory
非线性理论
1.
Application research of non-linear theory in hydrology and its prospect;
非线性理论在水文学中的应用研究及展望
2.
In this paper non-linear theory is applied to predict reservoir parameter and the complicated condition is described.
运用非线性理论预测储层参数 ,真实描述地下油藏的复杂状况 ,并通过仿真模拟得到储层剩余油示意
3.
According to the non-linear theory, different conditions of tire were simulated.
文章介绍了采用ANSYS有限元程序非线性分析技术,利用三维体单元和层单元建立轮胎的三维有限元模型,根据非线性理论,模拟轮胎的各种工况,得到轮胎各部分的应力、应变以及变形情况。
补充资料:分形理论
Image:11733377672850261.jpg
分形理论

分形理论是当今世界十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家曼德布罗特(b.b.mandelbort)首先提出的。1967年他在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。1975年,他创立了分形几何学(fractalgeometry)。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractaltheory)。



自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科契(koch)雪花曲线、谢尔宾斯基(sierpinski)地毯曲线等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。



分维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。分维,又称分形维或分数维,通常用分数或带小数点的数表示。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?



显然,并没有绳球从三维对象变成一维对象的确切界限。数学家豪斯道夫(hausdoff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是整数也可以是分数,称为豪斯道夫维数。记作df,一般的表达式为:k=ldf,也作k=(1/l)-df,取对数并整理得df=lnk/lnl,其中l为某客体沿其每个独立方向皆扩大的倍数,k为得到的新客体是原客体的倍数。显然,df在一般情况下是一个分数。因此,曼德布罗特也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维,海岸线的长度就确定了。



分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条