1) local C1 1 estimate
局部C1,1估计
1.
We obtain a local maximum principle for the semilinear nonuniformly elliptic equations in divergence form, and then show the local C1 1 estimate and a Bernstein type result for the solutions of the Hessian equations.
本文获得了一个半线性散度型非一致椭圆方程的局部最大值原理,并由此导出了Hes-sian方程解的局部C1,1估计和一个Bernstein型结果。
2) local estimate
局部估计
1.
In this paper,the authors improve the coefficient s of the local estimates on harmonic functions’ derivatives from Ck =(2 n+1nk)kα(n) to Ck =(n+k) n+kα(n)n n-k , k∈N, by employing induction and mean-value formulas for harmonic func tions and by looking for the maxima of functions.
本文利用归纳法和调和函数的平均值公式,并通过寻求函数的最大值,把调和函数k阶偏导数的局部估计式的系数由Ck=(2n+1nk)k/α(n)缩小到Ck=(n+k)n+k/α(n)nn-k。
5) local variance estimation
局部方差估计
1.
The improved algorithm was proposed for reducing the ultrasonic image speckle noise and ameliorating image quality,in which the double density dual tree discrete wavelet transform(DD-DT DWT) was combined with the bivariate shrinkage function(BSF) with local variance estimation.
针对去除斑点噪声提高超声图像质量的问题,提出双密度双树离散小波变换(DD-DT DWT)结合局部方差估计的双变量收缩阈值函数(BFS)的图像降噪改进算法实现超声图像降噪。
6) kernel estimation
局部线性估计
1.
The regression function m (- ) is estimated by the kernel estimation and local linear estimation.
本文针对传统的线性回归模型误差较大的特点,利用核估计与局部线性估计方法,以气温、节假日为自变量,以用水量为因变量建立了城市日用水量的多元非参数回归模型。
2.
The regression function m(·)is estimated by the kernel estimation and local linear estimation.
根据城市用水量的影响因素及特点,针对传统的线性回归模型误差较大的缺点,基于核估计与局部线性估计理论,建立了城市日用水量的非参数回归预测模型。
补充资料:Bayes估计量
Bayes估计量
Bayesian estimator
Bayes估计量【Bayesi助始廿ma.件;D自狱.。眨..界..] 用BayeS方法(Bayesian aPProach)由观察值对一未知参数所作的估计.统计问题使用这样的方法时,一般都假定未知参数所0 gR“是一具有给定先验分布7r=武do)的随机变量,决策空间D与集合0重合.且损失L(0,d)表示变量0与估计d的偏离.因此,函数L勿,d)通常假定为有形式L勿,d)=a(e)又(口一d),其中又是误差向量0一d的某个非负函数,若k二1,则常取又勿一d)={0一d}“(“>0).最有用且在数学上最方便的是平方损失函数L(口,d)=}‘一d1’.对这一损失函数,Bayes估计量(Ba卿决策函教(Bavesian dedsion function))占’二亡厂(x)定义为使最小总损失 !;‘p‘二·“,一,‘薯必,“一”‘·’2’〕口‘么,叮‘““,达到的函数,或与之等价,了是使最小条件损失 ,母‘E{[口一占(x)]2+“)达到的函数,由此推出,在平方损失函数的场合,B竹es估计量与后验均值占‘(x)=E勿{x)相等,而Bayesj双险(Bayes risk)为 。‘二,占‘)二E!D矿夕}x)]‘此处O(0}劝是后验分布的方差: o(口{x)二任{{口一E(0{x)12!,、}. 例设二=(x,,,二,戈),这里x,,,二,x。为具正态分布N勿,。’)的独立同分布变量,护己知,而未知参数0有正态分布N扭,铲).因为当x给定时口的后验分布为正态N(拜。,T:一、其中 n又。2一十“下一2 灿。二一—,,。一二n口‘一奋了一_ n口一汁~下且万=(x,十一+凡)/。,可知在平方损失函数{分一引’之下,Bayes估计量为占’(x)=线,而Bayes风险则为《二犷六伽铲十护).AH川畔即撰[补注]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条