说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 直线构形
1)  arrangement of lines
直线构形
2)  straight line mechanism
直线机构
1.
Characteristic of shield and its design on similar straight line mechanism;
掩护式支架特点及近似直线机构设计
2.
he paper discusses the solution of Bull s Point at various kinds of conditions and the design of highly accurate approximate straight line mechanism,especially in using many simplified intersections of circle point curve and inflection circle to get Bull s point and to design approximate straight line mechanis
研讨了各种情况下鲍尔点的求解法以及高精度近似直线机构的设计,尤其是利用各种简化的驻点曲线和拐点圆的交点,来求解鲍尔点和设计近似直线机构。
3)  Linear Structure
直线结构
1.
The article discusses the benefits and drawbacks of Matrix Structure and Linear Structure.
分析直线结构与矩阵结构的优缺点,结合实际探讨如何将矩阵结构运用于多校区综合性高校图书馆的管理。
2.
The costume has developed from loose model of linear structure to solid model of curvilinear structure, and then both linear and curvilinear structures are formed and developing parallel.
服装从直线结构宽松造型发展为曲线结构立体造型,继而形成直线结构和曲线结构两种造型的并列发展,这种服装的空间变革创造了新的时尚形象。
4)  rectilinear figure
直线图形
5)  straight stitch
直形线迹
6)  structural shape
结构线形
补充资料:策略构形


策略构形
tactical configuration:

[补注]几=l的t一(v,k,几)设计也称为Std皿r系(Steiner system),并记为S(t,k,v);任一r-(v,k,又)设计有时也记为S*(t,k,v). 无重复区组的非平凡t设计的存在性具有特别的意义(无重复区组是指任一k子集在列出的区组中不能出现两次);这样的t设计称为简单的(simPle).L.Teirlinck(【A3」)解决了一个长期未解决的猜想,他证明了对t的每一个值都存在非平凡的简单t设计.【A4」中列出了已知的t)4的简单t设计的无穷族及。续30的简单t设计的表. 仅有的非平凡的紧密4设计是关联于Mathieu群M23的唯一4一(23,7,l)设计(见【A51一【A7」),并且对任一固定值s)5,只有有限多个紧密25设计(见【A8」).策略构形[tac康ale咖四ra石叨;TaKT“”ecK,kOH中H-rypa”“:」,亦称战术构形,t设计(t一design),t一(v,火,又)设计(卜(。,火,几)一deslgn),。集S上的 t设计是集合S上的一个k子集(区组)系,使得S的每一个t子集恰好出现在几个区组里.2设计类与平衡不完全区组设计类相同(见区组设计(block deslgn)).策略构形的名字是对一个关联系统(incidellce system)而言的,在这里每一个集合关联于恰好k个元素,而每一个元素关联于恰好:个集合.。二k的t设计称为平凡的(trivial).若一个£设计是非平凡的,那么 t+1簇k簇v一l一t. 对任何、(t,每个t设计也是:设计.任意一个s子集在一个t设计区组里出现的次数几、由下式给出: 、、一({二:)一’(、二立)“,0一‘!·存在一个t设计的必要条件为几、是整数.特别对t)2,每个t设计是一个平衡不完全区组设计. t设计的主要问题是它们的存在性和构造问题.长时间以来,对。>3仅知道几个孤立的t设计;特别是分别与5重可迁Mathieu群M 12和M 24有关的5一(12,6,1)设计和5一(24,8,l)设计(见Mathi印群(Mat」liellgroup))然而在20世纪印年代发现了t设计与编码理论(见码(code)之间的联系(见【3」,[4」),并且从U个非零坐标的一些向量出发,给出了构造一个属于线性(。,k)码的t设计的方法,这个(n,k)码是一个有限域肠如te fiekl)(见fs],工7])上。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条