2) higher mean curvature
高阶平均曲率
1.
Secondly, we define the higher mean curvature and use Hopf Theorem, the method of J.
本文通过计算de Sitter空间中子流形的第二基本形式模长平方的Laplace和引入一个自共轭的二阶微分算子,以及定义高阶平均曲率,并且利用Hopf定理,J。
3) hifIher mean curvature form
高次平均曲率形式
4) rth-mean curvature
r阶平均曲率
5) planimetric average efficiency
效率曲线平均高
6) mean curvature
平均曲率
1.
Study on hypersurface with constant mean curvature in sphere;
球面上的常平均曲率超曲面
2.
The properties of a riemannian foliation with parallel mean curvature on a Riemannian manifold;
常曲率空间中具有相同常平均曲率的黎曼叶状结构的一些性质
3.
The classification of space-like surfaces with parallel mean curvature vector of an indefinite space form;
不定空间形式中具平行平均曲率向量的类空曲面(英文)
补充资料:平均曲率
平均曲率
mean cunafure
平均ee率[~e一臼此;epe刀田皿.印棚3.a],3维Euclid空间R’中曲面小2的 该曲面点A处主曲率(prmc币alcun瓜ture)k,与k:和之半: k,+k, H(A、二一_ 2对于EucUd空间R”+’中的超曲面。”,此公式可推广为: k,+…+k_ H‘A、二一 n其中k‘(j=l,…,n)是所给超曲面在点A任中”处的主曲率. R3中曲面的平均曲率可通过该曲面的第一和第二基本形式的系数表示: 1 LG一ZMF+NE H(A)二之二二二‘一二二七二一二二二全匕 2 EG一F乙其中E,F,G是在点A。中2处计算的第一基本形式(肠tfi功dsl拙ntal fbxm)的系数,L,M,N是该点处第二基本形式(second加次ha众浏园form)的系数.在所给曲面由方程Z=f(x,y)定义的特殊情形,平均曲率可用下述公式计算: H(A)= 卜十图’)典一2李李-业二、「1+国’}斗 L\oy/J ox一ox oy口x口yL\口x/J口y‘ 「1、r李、’十了鱿、’1’‘, L‘\刁x/’\a夕/」此公式推广到R”干’中由方程x。+、=f(x,,…,x。)定义的超曲面中”如下: H(A), 女rl+。2-位Z力2〕里本一争皿』五一望立- ‘习L一\口工‘/」dx了‘.界,口x‘dxz dx,dxz (l+p’)’12其中 ,2一}gtadf}2一r李、’+…、{共)’. ·扩一\似,/\叔。/ 几.A.C”江opoB撰【补注l对于n维E珑lid空间中余维数为”一功>1的m维子流形M,平均曲率推广为平均曲率法向量(n笼习n cun旧t切吧nont自1)概念: 、,一生”犷「TrA(。‘、1。. m]=!其中e:,·,e。一。是M在p处的法空间(见法空间(曲面的)(nom以lsP毗(to as切成‘e))的标准正交标架,A( ej):T,(M)~T,(M)(T,(M)为M在p处的切空间)是M在p处沿e,方向的形状算子(s恤pe oPemtor),它与M在p处的第二基本张量V由“
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条