说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 地热田成因
1)  origin of geothermal field
地热田成因
1.
The paper introduces a geologic model of origin of geothermal field by studying low-medium temperature geothermal system of convective type of geothermal field in south of Chifeng-Chaoyang area and based on formulizing feature of geologic structure, water supply and hybrid process of superficial coldwater and genetic analysis.
针对赤峰南部—朝阳地区地热田中低温对流型地热系统,在研究其地质构造、水源补给、浅部冷水混合作用影响等特征及其成因的基础上,建立了该区地热田成因的地质模式。
2)  origin of geoheat
地热成因
1.
From the viewpoint of the origin of geoheat of Tengchong,the overall hydrochemical characteristics and mode of occurrence of the geothermal water there are analyzed.
本文从腾冲地热成因的角度,分析其地热水化学的总体特征和赋存规律。
3)  origin of geothermal water
地热水成因
4)  Associated gas of heat genetic oil field
热成因油田伴生气
5)  geothermal field
地热田
1.
The formation of geothermal groundwater in the Longmen geothermal field;
龙门地热田温热水成因探讨
2.
The geochemical system of Zhejiang geothermal fieldsand their heat energy potential;
浙江地热田的地球化学体系及其热能潜力评估
3.
Xingzi hot spring and basic features of geothermal field,Lushan,Jiangxi province
庐山星子温泉及其地热田的基本特征
6)  the Kaldarholt geothermal field
Kaldarholt地热田
补充资料:地热田


地热田
geothermal field

  世界粉名地热田的地热特征┌────┬─────────┬───────────────┬──────┬──────┬─────┬────┐│热田 │地热田(国名) │热储时代与岩性 │热储温度(℃)│开采井深度 │流体含盐量│单并流公││润隆拍I │ │ │ │ m │ (g/I) │ (t/h) │├────┤ │ │ │ │ │ ││护、一监│ │ │ │ │ │ │├────┼─────────┼───────────────┼──────┼──────┼─────┼────┤│干燕 │拉德珊罗(意大利) │上侏罗纪一上三亚纪白云岩和白 │245 │1 000~2 000 │<1 .0 │23 ││气型 │ │云质灰岩 │ │ │ │ ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │盖瑟斯(美国) │晚侏罗纪硬砂岩 │295 │数千 │<1 .0 │70 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │松川(日本) │中新世火山碎屑岩 │200 │1 000~1 500 │<1 .0 │50 │├────┼─────────┼───────────────┼──────┼──────┼─────┼────┤│湿 │怀拉基(新西兰) │新生代浮石角砾岩 │270 │450~900 │12 │270 ││燕. ├─────────┼───────────────┼──────┼──────┼─────┼────┤│气 │布罗德兰兹(新西兰)│新生代火山角砾岩 │280 │1 000 │ │500 ││型 ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │塞罗普里托(豆西哥)│第三纪砂岩 │>300 │1 700~2 900 │~15 │230 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │阿瓦查播(萨尔瓦多)│新生代安山岩 │230 │600~1 500 │<1 .0 │200 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │波热特(前苏联) │新生代凝灰岩一角砾岩 │200 │122 │ │ ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │克拉弗拉(冰岛) │第四纪玄武岩 │200~345 │1 000~么200 │.<1 .0 │~200 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │汤加纳(菲律宾) │新第三纪安山质碎屑岩 │181~310 │600~3 000 │3~4(CI) │~100 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │大岳(日本) │中新世火山碎屑岩 │>200 │500 │ │~100 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │羊八井(中国) │第四纪一三亚纪砂岩砾岩、花岗 │172~328 │ 60~400 │2。2 │~100 ││ │ │岩 │ │1 500~2 000 │ │ │├────┼─────────┼───────────────┼──────┼──────┼─────┼────┤│热 │巴集盆地(法国) │第三纪一三处纪砂岩砾岩 │30~100 │500~2 700 │1~300 │~100 ││水 ├─────────┼───────────────┼──────┼──────┼─────┼────┤│型 │活诺宁盆地(匈牙利)│第三纪一古生代泥灰岩、灰岩 │35~100 │300~2 500 │4~5 │~100 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │华北平原〔中国) │第三纪一元古代砂砾岩、灰岩、白│30~1 18 │300~3 000 │<1 .0~8.0 │~60 ││ │ │云岩 │ │ │ │ │└────┴─────────┴───────────────┴──────┴──────┴─────┴────┘地热田(geothermal field)在当前或近期技术经济条件下有开发利用价值的地热资源富集区。按热能存在状态可分为:热水型地热田,即产出过饱和态地热水的地热田;湿燕气型地热田,通过钻孔引出的高温热水部分扩容汽化的地热田;干蒸气型地热田,产出不含液态水的干饱和蒸气。按地热田形成条件和储存空间可分为裂隙型地热田.沉积盆地型地热田和“人工地热田”。 ①裂隙型地热田:形态和规模均受控于断裂破碎带,一般延深的深度大、规模小,而温度较高(由于地下水直接通过深循环对流形成),矿化度低。中国已勘查的裂隙型地热田有32个,规模最大的相当于634万吨标准煤(见谋当圣)。 ②沉积盆地型地热田:分布在埋深较大的向斜、单斜构造发育区,或近代沉降盆地内。热储呈层状或透镜状分布,受岩性(含水层)控制。地热田的热水为承压水,规模大(分布面积几十至数百平方公里),地温梯度不高(接近正常),热源从侧面或深部经过传导补给(或加热的水渗透)。水的补给主要为大气环流水,另外也可能有古潜水(封存的地下水)。热水的矿化度较高。热水温度低而储量大,必须通过钻探方法提取。中国十大盆地深度仅ZOO0m以内地热资源可采储量达37.36xlo,?kJ,相当于1.27又10,Zt标准煤;而暂难开采(深度>2000m)的地热资源可采量为5.44只10,skJ,相当l·85X10,’t标准煤。 ③人工地热田:通过人工破碎热岩体(近代火山或岩浆侵入地区影响的高温岩层,无渗透性和地下水的补给),注入冷水后,再通过另一孔将加热的循环水提出。美国在芬顿山一个破火山口进行了人工地热田的发电试验。 地热田热储的岩性主要是角砾岩、砂岩和碳酸盐岩,世界著名地热田的地热特征见上页表。 (任湘)
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条