说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 半根群
1)  semi-radicable groups
半根群
2)  weakly semi-radicable groups
弱半根群
3)  root mass
根群
1.
Based on systematology and the recognition to underground environment and root mass, the paper submits the conception of plant species stable layer in underground habitat and survival regions for the first time.
基于对地境和根群的认识,从系统论的角度首次提出了植物物种地境稳定层及生存域概念,运用多种理化指标的组合状态对黑河中下游多年生植物物种地境稳定层层位进行了确定,深度范围为40~100cm。
4)  Semigroups
半群
1.
Pseudo-T-norms L-Fuzzy Regular Semigroups;
伪T模L-Fuzzy正则半群
2.
On ColAut_S (G)-vertex-transitive Cayley graphs of semigroups;
半群Cayley图的保色点传递性
3.
Pseudo-T-norm L-Fuzzy Semigroups;
半群上伪T模L-Fuzzy半群
5)  semigroup [英]['semiɡru:p]  [美]['sɛmi,ɡrup, 'sɛmaɪ-]
半群
1.
Connectivity of Julia sets of transcendental semigroups;
超越整函数半群的Julia集的连通性
2.
Bi-filters, Bi-ideal subsets and semilattice deco mpositions of semigroups;
双滤子、双理想子集与半群的半格分解
3.
On the Euler-fermat Formula of the Semigroup of the Boolean Matrices;
关于布尔方阵半群的Euler—Fermat公式
6)  hemigroup
半群
1.
This paper establishes a global attractor of hemigroup produced by the initial boundary value problem of generalized convection and expansion equation.
从动力系统角度,建立了广义对流扩散方程初边值问题所产生半群的一个全局吸引子。
2.
It proves that the posterior probability about experiments makes up hemigroup then proves that the posterior probability of the order experiments and the accumulation experiments are the same.
证明了后验概率关于试验构成半群 ,从而序贯试验与累积试验具有相同的后验概率 。
3.
The model shows that the available permission set together with multi-permission combination operator is a hemigroup.
模型表明,有效权限集合与多重权限合并运算具有半群结构。
补充资料:半群类中的根(根基)


半群类中的根(根基)
radical in a class of semigroups

半群类中的根(根基)1.山a社加ac比sof胭”i-孚仪.声;p戮从.KaJI.“月acce no月yI卫抓n] 把每个半群(sen卫,gro叩)S映到一个合同(见合同(代数学中的)(congrt此noe(ina琢bm))p(S)且具有下列性质的函数p:l)若S与T同构且p(S)=O(O表示相等关系),则p(T)“氏2)若O为S上的合同且户(S/0)=0,则户(S)缤夕;3)户(S/户(S))=0.若l)和3)成立,则2)等价于 s叩{户(S),0}/口〔户(S/0)对每个合同0成立.半群S称为p半单的(p .5口刊-sin甲le),如果p(S)二0 .p半单半群类包含单元素半群并且对同构和次直积封闭.反过来,每个具有这一性质的半群类一定是对某个根p的p半单半群类.若风S)~SxS,则S称为p根(p一份由以1).与环的情形不同,在半群中根不是被相应的根类决定的.若在根的定义中仅限于考虑由理想定义的合同,那么又有根的另一个概念,此时对应的函数在每个半群中取一个理想(j山川), 设介为一个半群类,它对同构封闭并包含单元素半群,则把每个半群S对应到其上的所有满足S/e〔只的合同口的交的函数就是一个根,称为p,.类只与P、半单半群类重合,当且仅当它对次直积封闭.在此情况下,S/p:(S)是S的落在介中的最大的商半群(见仿样(即lica)). 例.设究为有忠实的不可约表示(见半群的表示(化p献川以石。n ofa~一gro叩))的半群的类,则 P:(S)“ ={(a,b):a,b“S,(a,b)任林(as)自拼(bs)对一切:。sU必圣,其中 #(a)={(x,夕):x,夕任S,a“x二a“夕对某m,n)o}. 定义在给定半群类上对同态象封闭的根已被研究过 对每一个根p都有左多边形类艺(川(见多边形(么半群上的)(poly即n(o呢ra~id〕))设A是一左S多边形,S上的合同口称为A零化的(A-an司云加面g),如果(又,召)‘0蕴含对一切a‘A,又“二产a.所有A零化合同的最小上界还是一A零化合同,它记作A朋A.类工(p)按定义由所有这样的左S多边形A组成,它满足p(S/八币rA)=0,S遍历所有半群的类.若0为S上的合同,则一左(5/0)多边形在Z(p)内,当且仅当它作为S多边形时也属于艺(p).反过来,若已给定具有这些性质的左多边形类艺而名(S)为艺中所有左S多边形的类,则函数 f SxS.若艺fs)为空的,““’一1,瓜)Ann‘,其他情“,就是一个根.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条