1) asymptotic relative coefficients
渐近相对系数
2) asymptotic coefficient
渐近系数
3) relative asymptotic efficency
相对渐近效
1.
In this paper we will discuss two asymptotic normal statistics of normal distribution N(μ,σ~2) standard variance and these statistics compare on the principle of relative asymptotic efficency.
讨论了正态分布标准方差的两个渐近正态估计量及它们之间的优良性的比较,利用相对渐近效准则作为比较的准则。
4) asymptotic relative efficiency
渐近相对效率
1.
Thought the comparison of Pitman asymptotic relative efficiency of ERSS2 versus SRS,it is concluded that when the ranking cost is not ignored,in the small sample case ERSS2 better than RSS for the median test,while in the big sample case ERSS2 only better than SRS.
针对K元排序集抽样的一个特例极端排序集抽样2(ERSS2)进行符号秩检验,给出该抽样方法的精确和大样本渐近分布,通过分析计算ERSS2与简单随机抽样SRS的Pitman渐近相对效率,得出在排序花费不可忽略时,对小样本,在检验中位数时,ERSS2比RSS更有效,然而对于大样本的情形,ERSS2只优于SRS。
5) asymptotic relative efficiency
相对渐近效率
6) Pitman asymptotic relative efficiency
Pitman渐近相对效率
补充资料:渐近公式
渐近公式
asymptotic formula
渐近公式}朋yolp肠cl栩.lula二~Irror~绷如甲My月a} 包含符号。,O或等价记号一(函数的渐近相等(as,mPtotiee甲ality))的公式 渐近公式的例f 牡n一丫二一x十口(义舌%*0、 )5戈l+‘)(义‘),、。0;茸、十芜川、一丫’℃一,关二 “(一‘,一下:_于“一笑(7r以)是不超过二的素数的个数,. ‘M,B因脚月撰【补注】关于符号。O和一的意义,例如见阵11或!AZ}.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条