说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 全对角线幻方
1)  pandiagonal magic square
全对角线幻方
1.
The construction of pandiagonal magic square of odd-order n≥5,(n,3) =1 by natural square was realized.
用C—程序实现自然方阵的构造 ,并利用自然方阵构造奇数阶n≥ 5 ,(n ,3) =1的全对角线幻
2.
This paper also gives the definition of quadratic integer squares alone with the product between them and replace of proving the existence of pandiagonal magic squares of orders mn by proving the existence of pandiagonal magic squares of orders m and n respectively.
本文给出了二次整数方及其乘积的定义 ,化mn阶全对角线幻方的存在性为m阶和n阶全对角线幻方的存在性 。
3.
the pandiagonal magic squares were constructed in [l] using Kronecker product technique provided the order n≠4t+2,9t + 3,9t + 6.
文[1]利用Kronecker乘积技巧,构造出阶数为n(n≠4t+2,9t+3,9t+6)的全对角线幻方,本文利用等和矩阵的概念,构造阶数为n(n≠4t+2,n≠12t)的全对角线幻方,与文[1]相比,解决了文[1]中部分未能解决的全对角线幻方的构造问题。
2)  pandiagonal magic square
泛对角线幻方
1.
A set of new formula of constructing arbitrary 4k-orders conserve square sum pandiagonal magic square;
造任意4k阶保块和泛对角线幻方的又一组公式
2.
A set of formula of constructing arbitrary 4k-orders conserve square sum pandiagonal magic square;
造任意4k阶保块和泛对角线幻方的一组公式
3.
This paper presents a set of methods for constructiong the mn-order magic square (pandiagonal magic square) by using the m-order magic square (pandiagonal magic square).
本文给出一类用m阶幻方(泛对角线幻方)造mn阶幻方(泛对角线幻方)的方法。
3)  m×n generalized pandiagonal magic square
m×n广义泛对角线幻方
4)  pandiagonal addition multiplication magic squares
泛对角线加乘幻方
1.
This paper is proved that there exists no addition multiplication magic squares of order 4,k th(k≥2) degree magic squares of order 4,pandiagonal addition multiplication magic squares of order 5,pandiagonal k th (k 2)degree magic squares of order 5.
文 [2 ,3 ,4 ,5,6,7]证明 2 m ( m≥ 3 ) ,( 2 k+1 ) 2阶平方幻存在 ,mn,( m,n {1 ,2 ,3 ,6})加乘幻方存在 ,本文继文 [8]后 ,证明 4阶加乘幻方 ,4阶 k(≥ 2 )次幻方 ,5阶泛对角线加乘幻方 ,5阶泛对角线 k(≥ 2 )次幻方均不存
5)  pandiagonal k-th degree magic squares
泛对角线k次幻方
6)  all-symmetric magic square
全对称幻方
补充资料:对角线


对角线


  对角线汇血笋‘;几,arooa几‘] 连接多边形(多面体)的不处于同一边(面)上的两个顶点的直线段.如果一个多边形的顶点个数为九,则它的对角线的条数为n扭一3)/2.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条