1) 2-connected graphs
2连通图
2) 2-connected graph
2-连通图
1.
Let G=(V;E) be a 2-connected graph of order n and k a positive integer, we consider the problem of partitioning G into k vertexdisjoint paths under the neighborhood union condition and them obtain the new following results: If |N_G(x_1)∪N_G(x_2)|+|N_G(y_1)∪N_G(y_2)|n-k for every four independent vertices, then G can be partitioned into k vertex-disjoint paths.
给定一个阶为n的2-连通图G=(V;E)及一个正整数k,考虑在邻域并条件下G被分成k条点不交路的问题,得到下面的结果,对G中任何四个独立点x1,x2,y1,y2∈V,满足|NG(x1)∪NG(x2)|+|NG(y1)∪NG(y2)|n-k,则G能被分划分k条点不交的路。
2.
Any 2-connected graph on n vertices such that the degree sum of any two vertices at distance 2 is at least λ—1 contains a cycle of length at least λ.
若G是2-连通图,如对G中任何两个距离为2的点υ,ν都有d(υ)+d(ν)≥λ-1(5≤λ≤|V(G)|),则除了两类图外,G的最长圈的长至少为λ。
3) 2_edge_connected graph
2-边连通图
4) 2-connected maps
2-连通地图
5) 2 conncted Euler graph
2-连通Euler图
6) maximal 2-connected graph
极大2连通图
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条