1) Linear Hamilton system
线性哈密尔顿系统
3) Hamiltonian system
哈密尔顿系统
1.
All the physical courses whose dissipative effects are negligible can be expressed as Hamiltonian systems which preserve energy conservation and symplectic geometric structure.
一切耗散效应可以忽略不计的物理过程都可表示成能够保持辛几何结构不变的哈密尔顿系统的形式,它在自然界中具有普适性,也就是说大多数孤子方程都可以表示成哈密尔顿形式。
2.
A Hamiltonian system is introduced in the problem.
引进哈密尔顿系统,通过哈密尔顿二元方程,采用4对对偶变量,对系统中的基础问题进行数学描述,并归纳为临界荷载的特征值和特征解问题。
3.
We discuss the multisymplectic Preissman scheme which is mainly applied to solve multisymplectic Hamiltonian system in the paper.
主要讨论了用于求解多辛哈密尔顿系统的多辛Preissman格式及其简单应用。
4) Hamilton Systems
哈密尔顿系统
1.
M Order Continuous Finite Element Methods for Linear Hamilton Systems;
线性哈密尔顿系统的m次连续有限元法
5) Hamiltonian Systems
哈密尔顿系统
1.
Topology of Isoenergy manifold of Natural Hamiltonian Systems and Existence of Global Poincaré Section;
自然哈密尔顿系统能量面的拓扑与整体Poincaré截面的存在性(英文)
2.
By applying the continuous finite element methods for ordinary differential equations,the first,second and third order finite element methods for linear Hamiltonian systems are proved to be symplectic as well as energy conservative.
利用常微分方程的连续有限元法,证明了线性哈密尔顿系统的连续一、二、三次有限元法为辛算法;对非线性哈密尔顿系统,本文证明了连续一次有限元在3阶量意义下近似保辛,且保持能量守恒,并在数值计算上探讨了守恒性和近似程度,结果与理论相吻合。
3.
Hamiltonian systems have the two most important characteristics: conserved properties and preserve symplectic structures of flow.
哈密尔顿系统是最重要的动力系统。
6) near-Hamiltonian systems
近哈密尔顿系统