1) Column action method with orthogonalization
正交化列处理法
1.
Making use of the Column action method with orthogonalization and the linear transform, we put forward a kind of numrical method to determining the structure of solution space of arbitrary homogeneous system of linear algebraic equations, discuss its convergence, the computational complexity and the intrinsic parallism.
利用正交化列处理法和线性变换,给出了一个确定任意齐次线性代数方程组解空间结构的数值计算方法,分析了该方法的收敛性、计算复杂度、数值稳定性和内在并行性,进而探讨了该方法的应用前景。
2) row action method with orthogonalization
正交化行处理法
1.
In view of the special character of the Kirchhoff equations, the author puts forward a new numerical computation algorithm by using the method of the row action method with orthogonalization for linear algebraic equations.
针对基尔霍夫方程组的性质特点,利用线性代数方程组正交化行处理法,给出了求解基尔霍夫方程组的一种新的数值方法并分析了此方法的应用前景。
2.
Making use of the row action method with orthogonalization,the author put forward an iterative method to solve the fundemental system of solutions of arbitrary AX=0(A∈Rn×m) homogeneous system of linear algebraic equaeions,discussed its convergence and its computational complexity also,so its applied prospects and its intrinsic parallism.
利用正交化行处理法,给出了一个求解任意齐次线性代数方程组AX=0(A∈Rn×m)基础解系的迭代解法;分析了解法的收敛性和计算复杂度,探讨了解法的应用前景和内在并行
3) OAO Orthogonal Array Processor
正交阵列处理器
4) Column action method
列处理法
5) orthogonal heat-treatment
正交热处理
补充资料:正交化
分子式:
CAS号:
性质:将属于相同本征值的没有相互正交的波函数重新线性组合为新的相互正交的波函数的过程。通常选用施密特正交化方法使未正交的波函数相互正交。
CAS号:
性质:将属于相同本征值的没有相互正交的波函数重新线性组合为新的相互正交的波函数的过程。通常选用施密特正交化方法使未正交的波函数相互正交。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条