1) almost expandable
几乎可膨胀
1.
If each X_α is pointwise collectionwise normal (σ-pointwise collectionwise normal,almost expandable,σ-almost expandable),then X is pointwise collectionwise normal(σ-pointwise collectionwise normal,almost expandable,σ-almost expandable).
设X是|Λ|-仿紧的且P表示下列四条性质中的任意一条:(i)点式集体正规性,(ii)σ-点式集体正规性;(iii)几乎可膨胀性;(iv)σ-几乎可膨胀性。
2) nearly submetexpandable
几乎次亚可膨胀
1.
This paper proves the following results:Let X=lim→{Xα,παβ,Λ},λ=|Λ| and each projection πα is an open and onto mapping for each α∈Λ,if X is λ-paracompact and each Xα is nearly submetexpandable,then X is nearly submetexpandable.
如果X是λ-仿紧的且每个Xα是几乎次亚可膨胀的,则X是几乎次亚可膨胀的。
3) σ-almost expandable
σ-几乎可膨胀
1.
If each X_α is pointwise collectionwise normal (σ-pointwise collectionwise normal,almost expandable,σ-almost expandable),then X is pointwise collectionwise normal(σ-pointwise collectionwise normal,almost expandable,σ-almost expandable).
设X是|Λ|-仿紧的且P表示下列四条性质中的任意一条:(i)点式集体正规性,(ii)σ-点式集体正规性;(iii)几乎可膨胀性;(iv)σ-几乎可膨胀性。
4) almost expandability
几乎可膨胀性
1.
The difinitions of B i expandabilities,i=0,1,2 as the natural generalizatins of expandability,almost expandability and almost θ expandability are introduced respectively.
作为可膨胀性、几乎可膨胀性和几乎θ可膨胀的自然推广,引入了Bi可膨胀性的定义,i=0,1,2。
5) hereditarily nearly submetexpandable
遗传几乎次亚可膨胀
6) hereditarily almost σ-expandable
遗传几乎σ-可膨胀
补充资料:几乎可简化的线性系统
几乎可简化的线性系统
almost - reduciHe linear system
具有如F性质:存在个常系数系统t公“B夕.夕已R门、并且对姆一个。0,有月,仍.圈变换(LyaPUn(〕vt份I石for-ma加n)L£(t),使得经过变量替换x=L。(t)v后,系统(*)可变为系统 少=(B+C巡(t)乏、,,其中 }缪}IC!(‘)}}<标一个可简化的线性系统(甩ILlciblel~s”lell刃)均为儿乎可简化的,几乎可简化的线性系统!曲n喊一悦山心翻晚血.r卿劝曰l;no,T.np皿。朋Ma,几“能.“a,e“eTeMa],常微分方程的 一个系统 义=A(r)x,x任R”,(*) A(·):R*Hom(R丹,R月),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条