说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 弱耦合二维磁极化子
1)  weak-coupling 2-D magnetopolaron
弱耦合二维磁极化子
2)  Weak-coupling polaron
弱耦合极化子
1.
The ground state energy and mean number of optical phonon of weak-coupling polaron in infinite quantum well in this article are to be examined by using improved linear-combination-operator and variational method.
采用改进的线性组合算符和变分相结合的方法,导出了量子阱中弱耦合极化子的光学声子平均数和基态能量;讨论了阱宽对基态能量的影响以及Lagrange乘子u对光学声子平均数和基态能量的影响。
3)  weak-coupling impurity bound magnetopolaron
弱耦合杂质束缚磁极化子
1.
The relation of the vibrational frequency and the ground state binding energy of weak-coupling impurity bound magnetopolaron in an asymmetric quantum dot with the transverse and longitudinal confinement strength of quantum dot,the cyclotron resonance frequency of the magnetic field,the Coulomb bound potential and the electron-phonon coupling strength ware derived.
导出了非对称量子点中弱耦合杂质束缚磁极化子振动频率和基态结合能随量子点的横向和纵向受限强度、磁场的回旋共振频率、库仑束缚势和电子-声子耦合强度的变化关系。
4)  strong-coupling magnetopolaron
强耦合磁极化子
1.
Influence of temperature on the properties of the strong-coupling magnetopolaron in a parabolic quantum dot;
温度对抛物量子点中强耦合磁极化子性质的影响
2.
The influence of the magnetic field and temperature on the properties of the strong-coupling magnetopolaron in an asymmetric quantum dot is studied by using the Tokuda s linear-combination operator and the Lee-Low-Pines variational method.
采用Tokuda线性组合算符法和Lee-Low-Pines变换法,研究了温度和磁场对非对称抛物量子点中强耦合磁极化子性质的影响,简捷地得到了作为量子点的横向受限强度ω1、纵向受限强度ω2、电子-声子耦合强度α、外磁场的回旋频率ωc和温度参数γ的函数的磁极化子的振动频率λ、基态能量E0和有效质量m*的表达式。
5)  Two dimensional magnetopolaron
二维磁极化子
6)  strong coupling surface magnetopolaron
强耦合表面磁极化子
1.
The properties of the vibrational frequency λ 0 and the self trapping energy E tr of a strong coupling surface magnetopolaron for the semi infinite polar crystal were studied by means of the unitary transformation and the linear combination operator method.
应用么正变换和线性组合算符法研究了半无限极性晶体中强耦合表面磁极化子的振动频率 λ0 和自陷能 Etr的性质。
补充资料:弱耦合超导体(weak-couplingsuperconductors)
弱耦合超导体(weak-couplingsuperconductors)

在电-声子机制的BCS理论中,满足条件`N(0)V\lt\lt1`的超导体性质的称弱耦合超导体(见“BCS理论”),它们在0K温度时的能隙2Δ(0)与kBTc的比值

$\frac{2\Delta(0)}{k_BT_c}\approx3.53$

是一个普适常数,与多数超导元素实验结果基本符合和符合甚好。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条