1) topographic Rossby wave
地形Rossby波
1.
The effects of topographic gradient on the amplitude of topographic Rossby wave in basic flow;
地形坡度对基流中地形Rossby波振幅的影响
2.
Numerical calculations on the phase velocity and growth rate of topographic Rossby wave;
地形Rossby波相速和稳定性数值计算
2) Local vortex Rossby-wave
局地涡旋Rossby波
3) rossby wave
Rossby波
1.
Baroclinic stability of oceanic long Rossby wave in the North Pacific Subtropical Countercurrent;
北太平洋副热带向东逆流区Rossby波斜压稳定性
2.
Application of Jacobi elliptic functions in the atmospheric and oceanic dynamics: studies on two-dimensional nonlinear Rossby waves;
雅可比椭圆函数在大气和海洋动力学中的应用:二维非线性Rossby波研究
3.
Computational properties of a new horizontal staggered grid for Rossby waves;
一种新水平网格的Rossby波计算特性
4) Rossby waves
Rossby波
1.
Exact solutions to the nonlinear Rossby waves with a complete representation of the Coriolis force;
完整Coriolis力作用下非线性Rossby波的精确解
2.
Effects of the Horizontal Component of the Earth’s Rotation on Rossby Waves;
地球旋转水平分量对Rossby波的影响
3.
It is shown that the Rossby waves possess a tilting spiral structure, which represents that the stream field is horizontal convergence at lower layer and ascendi.
应用描写大气大尺度运动的准地转方程组 ,求得了大气Rossby波的三维定常流场以及相应的位温场、涡度场和散度场 ,其中的三维流场构成了物理空间的一个非线性自治动力系统 。
5) Rossby wave activity
Rossby波活动
1.
SASWJ exhibits changes of jet axis,intension and Rossby wave activity along SASWJ,and perturbation kinetic energy index along SASWJ can indicate Asia jet variability.
结果表明,亚洲急流存在其南北位置、强度和沿急流Rossby波活动的变化,定义的西风急流扰动指数能较好地综合反映急流的这3种变化。
6) Vortex Rossby wave
涡旋Rossby波
1.
It is found by the WKB method that the packetof nonlinear Vortex Rossby wave which is effected by Rossby parameterβisgoverned by the nonlinear Schr(?)dinger equation and we solve the Schr(?)dingerequation under the condition that has practi.
涡旋Rossby波的传播和发展问题是研究台风运动的重要问题。
2.
This is exactly the physical sources of vortex Rossby wave.
本文采用实况统计与数值模拟相结合的方法,对1999年至2005年长江中下游地区梅雨期间23个低涡暴雨过程进行分析得出:大部分低涡降水区基本流场都存在二次切变或者非线性切变,而这种情况正是涡旋Rossby波产生的物理根源,因此涡旋Rossby波对于低涡暴雨系统的发生、发展和移动的物理机制有极其重要的意义。
补充资料:地形跟随和地形回避雷达
飞行器上探测地形变化和回避地物的雷达。它是自动地形跟随系统的组成部分。地形跟随雷达把探测到的飞行前方的起伏地形信息(距离、方位、高度)提供给自动飞行控制系统或驾驶员,以便操纵飞机与地面保持一定的垂直距离飞行。地形回避雷达不断探测出飞行前方高于规定高度的障碍物,驾驶员根据雷达的指示作横向的机动飞行。现代军用飞机为了低空安全飞行,机上只装地形跟随雷达就能满足要求,而地形回避雷达则是一种辅助手段。有的机载雷达兼有地形跟随和地形回避功能。
地形跟随和地形回避雷达的工作原理与普通的脉冲雷达(见脉冲多普勒雷达)大致相同,区别只是功能不同,组成有些差异。测量精度和分辨率比一般雷达高。这类雷达多采用单脉冲技术,有的采用脉冲多普勒体制或相控阵技术。用地形跟随雷达飞行时,天线波束以一定的俯角照射飞机前方的地面或在一定的俯角内扫描,随时将测出的距离与规定的参考距离作比较,产生一个要求的俯仰变化率信号。同时由无线电高度表测出飞机对地面的相对高度,并与规定的安全相对高度相比较,产生另一个要求的俯仰变化率信号。从这两个俯仰变化率中选取一个对飞行较安全的变化率,再与陀螺测定的飞机实际俯仰变化率作比较,其差值信号就是飞机爬高飞行或下降飞行的修正值 (图1)。
地形回避雷达比地形跟随雷达简单。驾驶员可以选择与飞机有一定高度间隔的安全飞行平面,雷达天线保持一固定的俯仰角,左右扫描,测出高于安全飞行平面地物的高度,驾驶员操纵飞机作横向机动,绕过地形障碍。雷达提供的地物回避指令信号也可输给自动驾驶仪,使飞机自动避开障碍物 (图2)。
为了确保低空飞行的安全,这两种雷达都备有自检报警系统并采用余度技术,一部雷达出现故障时,立即自动转换另一部接替。
地形跟随和地形回避雷达的工作原理与普通的脉冲雷达(见脉冲多普勒雷达)大致相同,区别只是功能不同,组成有些差异。测量精度和分辨率比一般雷达高。这类雷达多采用单脉冲技术,有的采用脉冲多普勒体制或相控阵技术。用地形跟随雷达飞行时,天线波束以一定的俯角照射飞机前方的地面或在一定的俯角内扫描,随时将测出的距离与规定的参考距离作比较,产生一个要求的俯仰变化率信号。同时由无线电高度表测出飞机对地面的相对高度,并与规定的安全相对高度相比较,产生另一个要求的俯仰变化率信号。从这两个俯仰变化率中选取一个对飞行较安全的变化率,再与陀螺测定的飞机实际俯仰变化率作比较,其差值信号就是飞机爬高飞行或下降飞行的修正值 (图1)。
地形回避雷达比地形跟随雷达简单。驾驶员可以选择与飞机有一定高度间隔的安全飞行平面,雷达天线保持一固定的俯仰角,左右扫描,测出高于安全飞行平面地物的高度,驾驶员操纵飞机作横向机动,绕过地形障碍。雷达提供的地物回避指令信号也可输给自动驾驶仪,使飞机自动避开障碍物 (图2)。
为了确保低空飞行的安全,这两种雷达都备有自检报警系统并采用余度技术,一部雷达出现故障时,立即自动转换另一部接替。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条