1) alternating link
交错环链
1.
Let L be an alternating link in S~3 and let L project on S~2 except near crossings of L where L lies on a bubble.
设L是S3中的一个交错环链,将L投影到S2上,L的每个交叉点都对应一个bubble,用来体现L的交叉点性质。
2.
Let L be an alternating link in S3 and Let Lproject on S2 except near crossings of L where L lies on a bubble.
本文讨论了交错环链补中的不可压缩、分段不可压缩曲面的性质。
2) alternating knot
交错纽结与交错环链
1.
It is showed that alternating knot(link)has no rational root by using the solution of rational root of rational coefficent polynomial,and analyzed the difference between Jones polynomial and the ordinary polynomial in algebra.
介绍了研究纽结理论的有力工具———琼斯多项式及其构造 ;重点利用多项式理论中有理系数多项式有理根的求法证明了交错纽结与交错环链的琼斯没有有理根 ,并分析了琼斯多项式与高等代数中多项式的异
3) almost alternating link
m-几乎交错环链
1.
The properties of m-almost alternating link diagrams;
m-几乎交错环链图的性质
4) almost alternating rational link
几乎交错有理环链
1.
Computing formulas of an F polynomial of almost alternating rational links were given by discussing the properties of a polynomial with two variables and by using Lickorish s ways, that is, we used linear skein theory to study the properties of polynomial.
通过对两个变量多项式性质的讨论以及 Lickorish方法 ,给出几乎交错有理环链的F多项式的计算公式 。
5) Almost Alternating Knots and Links
几乎交错纽结与链环
6) pierced chain of0
0,1交错链
补充资料:交错环和交错代数
交错环和交错代数
alternative rings and algebras
交错环和交错代数1 aitettla幼犯d雌s叨d川邵b”.;助‘T印.叮娜助砚”山田叨皿叨,曦讨J 孪拳所(al temative ring)是指每两个元素都生成一个结合子环的环;孪考华熬(al ter”ativeai二玩a)是(线性)代数并且是交错环.根据E.Artin的一个定理,所有交错环的类由如下一组等式定义: (习)y”x切)(右交错性); (xx)y二x(却)(左交错性).于是,交错环形成一个簇.在这种环里,结合子(ass呱ator)(结合性的亏量) (x,少,:)=(xy卜一x恤)是其自变元的一个斜对称〔交错)函数,这个事实表明使用术语“交错环”是合理的. 交错环的第一个例子是Ca尹ey数(Caylcy num-悦巧),它作成一个交错除环(幻忱n犯ti说s处阴一几城)或交错体,即有单位元的交错环且对于任意b和a笋0,方程ax=b和ya=b有唯一的解.交错除环在射影平面的理论中起着实质性的作用,这是因为一个射影平面是一个Motlfa飞平面(Mdufangp场能)(即关于某一直线的平移平面),当且仅当其三元环的任何坐标化是交错除环.在一个有单位元的环R中,如果每个非零元素均可逆且对任意a,b〔R均有等式a一’(ab)二乙(或者,(b a)a一’=b),则R是交错除环.任何交错除环或者是结合的,或者是其中心上的Ca洲ey一Di改50.代数(Qyley-众汰阳n爽灼ra). 每个单交错环也或者是结合环,或者是其中心上的Cayley一Di由on代数(在这种情形下,此代数未必是体).结合环和本原交错环都被Cayley·Di山on代数所穷尽.所有素交错环R(如果3R护0)或是结合环,或是Cayley一Dickson环. 在相似的条件下,交错环的许多性质本质上不同于结合环.例如,如果R是交错环,A和B是其右理想,则其积月丑未必是右理想,即使A是双边理想也如此.但是,两个双边理想的积仍是双边理想.交错环与结合环的差异也强烈地体现在这样的事实之中:由于括号放的位置不同,元素的积或是零或非零,从而交错环有各种幂零性.通常在交错环中使用如下几种幕零性:可解性(s olvabilit刃(环R称为具有指数m的可解子(s ulvable ringl如果存在自然数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条