1) Hilbert basis
Hilbert基
1.
Hilbert-Weyl theorem shows that there is a Hilbert basis consisting of Γ-invariant homogeneous polynomial germs for Pn(Γ).
设Γ是一作用在Rn上的紧李群,Pn(Γ)是Γ不变的多项式芽环,Hilbert-Weyl定理证明了对于Pn(Γ)总存在一组由Γ不变的齐次多项式芽构成的Hilbert基。
2.
Hilbert-Weyl theorem shows that there is a Hilbert basis consisting of Г invariant homogeneous polynomial germs for Pn(Г) .
Hilhert-Weyl定理证明了对于Pn(Γ)总存在一组由Г不变的齐次多项式芽组成的Hilbert基。
2) pitch Hilbert transform
基音Hilbert变换
3) Hilbert's double series inequality
Hilbert双重基数不等式
4) Hilbert Spectrum
Hilbert谱
1.
Hilbert spectrum and intrinsic oscillation mode of dynamic response of a bilinear SDOF system: influence of input harmonic frequency;
双线性单自由度体系强迫动力反应的Hilbert谱与本征振动模态:输入简谐波频率的影响
2.
Analysis and application of empirical mode decomposition and Hilbert spectrum;
经验模式分解与Hilbert谱的分析及应用
3.
By representing the intrinsic mode functions (IMF s) as time varying VARMA model, the time varying model parameters estimated with Kalman filter are used to calculate the instantaneous frequencies, according to which the Hilbert spectrum is yielded and the envelope is derived from the .
指出了Hilbert-Huang变换方法中进行Hilbert谱分析时应引起重视的两方面限定。
5) Hilbert code
Hilbert码
1.
Since spatial ordering based on one dimensional mapping for multi dimensional data has its own merits, the spatial clustering characteristics of Morton code,Gray code,Hilbert code and Sierpinsky code are analyzed and compared.
分析了基于栅格格网的索引数据结构在空间查询中的重要地位 ,讨论了基于多维数据一维映射的空间排列的优点 ,对 Morton码、Gray码、Hilbert码和 Sierpinsky码的空间聚类特征进行了分析和比较 ,得出了 Hilbert码在空间查询中效率最高的结论 。
6) Hilbert kernel
Hilbert核
1.
In this paper,we conduct reasoning for inversion formula of Hilbert kernel singular integral equation using inhomogeneous periodic Riemann boundary value problem.
利用非齐次PR问题给出了Hilbert核奇异积分方程反演公式的推导。
2.
The singular integral equation(SIE) with Hilbert kernel which has high order singularity solution is studied by solving the corresponding periodic Riemann boundary value problem,and then the problemof SIE with Hilbert kernel has one order singularity solutionis generalized.
首先讨论了具有高阶奇性解的周期Riemann边值问题,然后通过解周期Riemann边值问题研究了具有高阶奇性解的带Hilbert核的奇异积分方程,将已有的具一阶奇性解的带Hilbert核的奇异积分方程进行了推广。
补充资料:2-甲氧基碳酸基乙基胺基乙基胺基丙基三甲氧基硅烷
CAS: 1067-66-9
分子式: C12H28N2O5Si
分子量: 308.45
中文名称: 2-甲氧基碳酸基乙基胺基乙基胺基丙基三甲氧基硅烷
英文名称: [N'-(2-Methoxycarbonylethyl)aminoethylaminopropyl]trimethoxysilane
10-diaza-3-silatridecan-13-oic acid, 3,3-dimethoxy-2-oxa- methyl ester
n-(2-((3-(trimethoxysilyl)propyl)amino)ethyl)-beta-alanin methyl ester
methyl 3,3-dimethoxy-2-oxa-7,10-diaza-3-silatridecan-13-oate
methyl[2-(3-trimethoxysilylpropylamino)-ethylamino
分子式: C12H28N2O5Si
分子量: 308.45
中文名称: 2-甲氧基碳酸基乙基胺基乙基胺基丙基三甲氧基硅烷
英文名称: [N'-(2-Methoxycarbonylethyl)aminoethylaminopropyl]trimethoxysilane
10-diaza-3-silatridecan-13-oic acid, 3,3-dimethoxy-2-oxa- methyl ester
n-(2-((3-(trimethoxysilyl)propyl)amino)ethyl)-beta-alanin methyl ester
methyl 3,3-dimethoxy-2-oxa-7,10-diaza-3-silatridecan-13-oate
methyl[2-(3-trimethoxysilylpropylamino)-ethylamino
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条