1) lattice gauge theory
格点规范场
1.
The methods of connected overlapped Wilson graphs and connected hollow Wilson graphs are adopted respectively to investigate convergent behaviors of vacuum wave function in 2+1-D SU(3) lattice gauge theory.
分别采用相连重叠图、相连空心图方法展开波函数,研究2+1维SU(3)格点规范场真空波函数的收敛性。
2.
By Solving Shrodinger equation with the RPA coupled cluster method, The higher order glueball wave function in 2+1-D SU(2) lattice gauge theory is calculated.
在计算中,用空心Wilson圈图作为试探波函数,对特殊Wilson圈图作近似处理,计算出的2+1维SU(2)格点规范场的六阶和七阶胶球波函数的μ0F和μ2F及相关参数ζ在弱耦合区(β=48—96)出现较好的标度行为,七阶真空能量在整个区域(β=08—80)与六阶真空能量一致。
3.
The coupled cluster method is improved with the random phase approximation (RPA) to calculate vacuum wave function and vacuum energy of 2+1-D SU(2) lattice gauge theory.
采用无规相近似 (RPA)耦合集团展开方法 ,计算出 2 +1维SU(2 )格点规范场的三到六阶真空波函数和真空能量 。
2) lattice gauge
格点规范
1.
We investigate the vacuum state of (2+1)-dimensional U(1) lattice gauge field theory, and derive the parameters of the continuum vacuum wave function in great details.
对2+1维U(1)格点规范场论真空态进行研究,仔细推导出连续极限下真空谈函数中参数μ_0和μ_2的普适表达式,并用截断本征方程法进行数值计算。
2.
The vacuum state of (2+1) dimensional SU (2) lattice gauge field theory is investigated.
对 2 + 1维SU(2 )格点规范场论真空态进行研究 ,推导出连续极限下真空波函数中参数 μ0 和 μ2 的普适表达式 。
3.
The phase structure of anisotropic u(1) coupled with bosan lattice gauge model isanalysed through meanfield combined with saddle point correction.
利用平均场结合鞍点修正方法分析了各向异性u(1)耦合玻色子格点规范模型的相结构,给出了相图。
3) lattice gauge theory
格点规范理论
1.
In this paper, convexity comulate expand method is applied to study SU(3) lattice gauge theory and the Polyakov line of both isotropic and non-isotropic theoretic model at finite temperature is calculated to the third lever.
应用变分累积展开方法研究SU(3)格点规范理论相结构,对有限温各向同性和异性SU(3)格点规范模型的Polyakov线,计算到第三级。
2.
In this paper, convexity comulate expand method is applied to study SU (3) lattice gauge theory and the order parameter (Polyakov line) for this theoretic model is calculated to the third level.
本文应用变分累积展开方法研究SU(3)格点规范理论相结构,计算了SU(3)格点规范模型的序参量Polyakov线,计算到第三级,结果表明,在高温下有解禁发生,即剧烈地热运动可分离出自由状态的夸克。
3.
On account of the fact that the Hamiltonian of the lattice gauge theory possesses extended cubic group symmetry, the linear space of the configurations of spatial Wilson loops can be decomposed into direct sum of subspaces which belong to an irreducible representation of the extended cubic group.
应用格点规范理论的哈密顿量具有的扩充立方体群对称性,将3种常见的Wilson圈分别组成的线性空间分解成该群的不可约表示的子空间的直和,从而得到了具有确定角动量,宇称和电荷共轭宇称的胶球波函数。
4) abelian lattice gauge
阿贝尔格点规范
5) specification
[英][,spesɪfɪ'keɪʃn] [美]['spɛsəfə'keʃən]
规格;规范
6) specification
[英][,spesɪfɪ'keɪʃn] [美]['spɛsəfə'keʃən]
规范、规格
补充资料:规范场
规范场 gauge field 与物理规律的定域规范变换不变性相联系的物质场。在力学中重力场内的物体所受的重力是确定的,而物体的势能因势能零点的选取不同而不同,势能缺乏唯一性;同样在电磁学中,电磁场由电场强度E和磁感应强度B描述,而采用标势j和矢势A描述电磁场也缺乏唯一性。尽管存在这样的不唯一性,要求电磁场还需满足规范变换。电磁规律在规范变换下保持形式不变。 量子力学的发展赋予规范变换新的含义。在量子力学中波函数本身不是一个可观测量 ,只有波函数的模方|ψ|2表示粒子出现的概率,这意味着波函数允许乘以一个相因子eiγ(x,y,Z,t) ,或者说波函数允许作一相位变换 。当相因子与时空坐标有关时,为了保持量子力学方程具有不变性,要求引入适当的场量,此场量的变换正是规范变换。因此在量子力学中规范变换就是相当于相位变换。由于相位变换是随时空而变的,规范变换称为定域规范变换。相应的场称为规范场。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条