1) Hausdorff centered measure
均匀三部分康托集
1.
In this paper, the exact value of the s-dimensional Hausdorff centered measure of K(λ,3) is given by computing the upper spherical density of a probability measure μ at point x, where s = logλ1/3 is the Hausdorff dimension of K(λ,3).
均匀三部分康托集K(λ,3)是满足开集条件的自相似分形集。
2) uniform cantor set
均匀康托集
1.
In this paper, we discuss the necessary condition of two uniform Cantor sets to be bi Lipschitz equivalent.
本文讨论两均匀康托集双李卜希兹等价的必要条件 ,从而说明尽管维数是双李卜希兹不变量 ,但两集仅具有相同的维数远不足以保证它们等价 。
3) 3-part cantor set
三分康托集
1.
In my paper,a construction of fractral sets satisfying dimBF<dimBF and easy to proof and explanation are given by using a change of 3-part cantor set.
文章利用三分康托集的一个变化,构造出一种较简单且易验证和说明的满足dimBF
4) Kangtuo Three Division Theory
康托三分集
1.
A proof method of properties of Kangtuo Three Division Theory;
康托三分集几个性质的一种证明方法
5) Cantor five dividing set
康托五分集
6) Cantor seven dividing set
康托七分集
1.
In this paper, on the basis of Cantor ternaty sets, Cantor five dividingsets, Cantor seven dividing sets and Cantor 2k + 1 dividing sets (where k is an arbi-traty given natural number) are defined, and their some properties are given.
本文在康托三分集的基础上定义了康托五分集,康托七分集,康托2k+1(其中k是任意给定的自然数)分集,并给出了它们的一些性质,同时,在给定的范围内推广了康托函数的定义及性质。
补充资料:遥和康录事李侍御萼小寒食夜重集康氏园林
【诗文】:
习家寒食会何频,应恐流芳不待人。已爱治书诗句逸,
更闻从事酒名新。庭芜暗积承双履,林花雷飞洒幅巾。
谁见柰园时节共,还持绿茗赏残春。
【注释】:
【出处】:
全唐诗:卷815-58
习家寒食会何频,应恐流芳不待人。已爱治书诗句逸,
更闻从事酒名新。庭芜暗积承双履,林花雷飞洒幅巾。
谁见柰园时节共,还持绿茗赏残春。
【注释】:
【出处】:
全唐诗:卷815-58
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条