1) spermatozoid
[英][spə,mætə'zəuid] [美][spɚ,mætə'zoɪd, 'spɚmətə-]
游动精子
1.
The electron microscopic technique was adopted to study spermatocyte and spermatozoid ultra structures of Dryopteris crassirhizoma Nakai.
应用电镜技术对蕨类植物绵马鳞毛蕨DryopteriscrassirhizomaNakai精母细胞和游动精子的超微结构特征进行了研究。
2.
The ultrastructure of the mature spermatozoid of the apogamous fern Pteris fauriei Hieron was studied using transmission electron microscope technology.
)游动精子的超微结构进行了研究。
3.
The Studies of the Locomotory Apparatus and Cytoskeleton in the Spermatozoid of Ferns;
介绍了近年来蕨类植物游动精子运动器和细胞骨架的研究进展。
2) sperm motility
精子游动性(鱼)
3) zooidogamy
游动精子结合
4) sperm swim-up
精子上游
6) Zoospore
[英]['zəuəspɔ:] [美]['zoə,spɔr]
游动孢子
1.
Methods of Zoospore Inducing and Preservation for Phytophthora capsici;
辣椒疫霉菌保存及游动孢子诱导技术研究
2.
Studies on the culture of Phytophthora nicotianae and the methods for producing zoosporangium and zoospore rapidly and enormously;
烟草疫霉菌的培养及大量产生游动孢子囊和游动孢子方法的研究
补充资料:随机游动
随机游动
random walk
【补注】对物理和生物科学的应用见「A7]及其所引文献.随机游动[爪回.旧”.业;c月y,咖oe6月,明明Hel 一种特殊形式的随机过程(stochastic pl℃0留s),可以解释作描述某一状态空间中的质点在某种随机机制作用下的运动的模型.状态空间通常为d维Euclid空间或在其中的整值格点.随机机制可以是各种各样的;最普通的随机游动由独立随机变量和或M豆匹。链生成.还没有一种被普遍接受的严格的随机游动的定义. 在d二1的情形、最简单的随机游动的轨道用初始位置S。=O及部分和的序列 又一X!十…十戈,”二1,2,…,(l)来描述,其中戈是具有砚叮幻曲i分布: 尸(戈=l)“P,P(戈=一l)=q=l一P, p任(0,l)的独立随机变量.5。的值可解释作:两个局中人之一在每次博奕中以概率P赢一元钱,以概率1一p输一元钱,在n次博奕后他所赢得的钱.如果博奕由投掷一个无偏的硬币构成,即假定p=1/2(对称游动(syrnr朋咏认么玫),见R沉以皿随机游动(氏rno宜伍份记呱认司k)).假设第一个局中人的初始资本为b,第二个为a,当运动着的质点(具坐标S:,52,…)首次接触到水平a或一b之一时博奕即告结束.在此时刻,局中人之一输光.这就是古典的输光问题,其中边界点a和一b可看作是吸收的(幽orbing). 在排队论(queueir嗯山印卿)的应用中,质点接近边界a和一b的性态可以不同,例如:如果a“的,b=0,则随机质点在时刻。十1的位置由 Z。十,=11捆Lx(0,Z。+戈十、)(2)给定,0处的边界称为反射的(比月州」ng)或阻留的(山想垃访g).质点在边界邻域的性态也存在其他的可能性. 如果a=的,就得到具有一个边界的随机游动(歇叱。m城业认欣h one boUnda卿).如果a=b=QO,则就得到无限制的随机游动(ulln治trict记m耐。m狱幻k).通常使用离散MaPx加链的机制,特别是通过研究相应的有限差分方程来研究随机游动.例如,在输光问题中,设“*是第一个局中人初始资本等于k时输光的概率,0簇k簇a+b,两个局中人的总资本是a+b.则根据首次跳跃处的全概率公式,推导出u;满足方程 uk=Pu*,1+qu*一1,0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条