说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 弱填充测度
1)  weak packing measure
弱填充测度
1.
An existence theorem on weak packing measure;
关于弱填充测度的一个存在性定理
2)  Packing measure
填充测度
1.
The Packing measure of a King of the self-affine sets of three-Dimension Euclidean Space is discussed.
讨论三维欧氏空间上的一类自仿射集的填充测度 ,对(t) =tθ,(t) =tθ|logt|及更一般的情况 ,证明了填充测度P[K(T ,D) ]为无穷或有限的条
2.
In this paper thc Packing measure of the generalized Sierpinski sponge of three-di-- mension Euclidean space is discussed, For and genreal situations, the conditions that the Packing measure is finite or infinite are proved
讨论了三维欧氏空间上的一类自仿射集──广义谢尔宾斯基(Sierpinski)海绵的填充测度(Packing Measure),对及更一般的情况,证明了填充测度 为无穷或有限的条件
3.
In Chapter One,we develop a theory for the centered Hausdorff measure and the packing measure in metric spaces .
在第一章中,我们推广了在度量空间中所定义的中心Hausdorff测度和填充测度。
3)  diameter-type packing measure
直径型填充测度
1.
In this paper, we consider the diameter-type packing measures with respect to equivalent metrics.
本文研究了在等价度量下,直径型填充测度之间的关系,证明了对任意紧度量空间(X,ρ),Pρ,g和Pcρ,g等价当且仅当纲函数g满足加倍条件。
4)  abstract packing dimension of measure
测度的填充维数
5)  packing measure and dimension
填充测度和维数
6)  completion test
填充测验
补充资料:概率测度的弱收敛


概率测度的弱收敛
eak convergence of probability measores

【补注】概率测度弱收敛的一般背景是在完全可分度虽空间(n犯川C sPace)(X,p)(亦见完全空间(comP-letesPace);可分空间(sep娜blesP毗))上讨论的,p是距离,具有定义在X的BOrel子集上的概率测度召。,n二O,l,,…如果对定义在X上的每个有界连续函数f,当。~二时,有Jfd产。~了fd拜。,则称拜,弱收敛到产。.如果在X中取值的随机变量氦的分布是拜。,n=o,l,…,如果拼。弱收敛到群。就写作省。人‘。,并且称七。依分布收敛到么,(亦见依分布收敛(①n凭r罗nCe in dis苗bution)). 在概率论中使用最普通的距离空间是k维Euclide空间Rk,〔0,l]上连续函数空间C[0,11以及在仁O,11上右连续具有左极限的函数空间Dto,1]. 更为丰富的距离空间中的弱收敛比在Eucljd空间中的用处大得多.这是因为在R’中依分布收敛的各种各样的结果可由它借助于连续映射定理(conti-nuo璐maPping tl篮幻哪)导出.该定理说,如果在(x,,)中着。二‘。且映射儿:x~R是连续的(或至少是可测的,且P(尝。6D*)二O,其中D*是h的不连续点集),则h(亡。)‘h(省。).在许多应用中极限随机元是Bro”.运动(Bro认们坦n mot」on),它以概率1具有连续轨道. 最基本的弱收敛结果之一是关于和s。=艺夕_:x.,n)1,的L心璐ker定理(功nsker tll印reTn),其中戈是具有EX:=0,EX)‘1,i=1,2,…,的独立同分布随机变量.可以这样来陈述其轮廓:在C【O,l]中,令S。=o,S。(t)二n一”,{SL。:l+(nt一[nt])·戈。t〕+、},o(t(l,其中卜]表示x的整数部分,则功挑ker定理断言s。(t)车w(t),其中w(t)是标准Brown运动.应用连续映射定理很容易提供对诸如~1、*‘。S*,max,、*‘。k一”2 15*l,艺又_:了(S*)。)和艺二_,:(s、,s*+1)等函数的依分布收敛结果,其中I是示性函数而下(“,b)=l,如ab<仇=0,其他.概率测度的弱收敛【W.山。皿到曰岁翔沈of声触晒ty~-,.留;c“浦aa cxo口”Moc、解妙~oc珊0益Me伽]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条