1) Generalized π-regular ring
广义π-正则环
2) generalized regular ring
广义正则环
1.
If a ring R is generalized regular ring,then following conditions are shown to be equivalent: (1)R is strongly regular ring;(2)E(R)C(R);(3)ex=xe,for all e∈E(R),all x∈N(R);(4)N(R)C(R);(5)E(R) is closed under the multiplication in R;(6)E(R) is a weakly commutative.
R是广义正则环,以下条件等价:(1)R是强正则的,(2)E(R)C(R),(3)ex=xe,对所有e∈E(R),对所有x∈N(R),(4)N(R)∈C(R),(5)E(R)在R中关于乘法是封闭的,(6)E(R)是弱可换的。
3) π-regular ring
π-正则环
1.
In this paper we study extensions of Abelian π-regular rings.
本文研究了Abelπ-正则环的扩张。
2.
Moreover,we show that: If R is a left G-morphic ring,the same is true of eRe for every idempotent e∈R;Every unit π-regular ring is a left(right) G-morphic ring;Every left G-morphic ring is a right GP-injective ring.
我们给出了G-morphic环的定义,证明了如下主要结果:对R中的任意幂等元e,如果R是左G-morphic环,则eRe也是左G-morphic环;每一个幺π-正则环是左(右)G-morphic环;每一个左G-morphic环是右GP-内射环。
3.
Some connections between AGP-injective rings and π-regular rings are given here.
给出了AGP-内射环与π-正则环的一些联系,证明了若R为reduced环,则R是左AGP-内射环当且仅当R是π-正则环,并着重讨论了满足一定条件的AGP-内射环是π-正则环。
4) π~*-regular ring
π~*-正则环
5) right generalized semiregular rings
右广义半正则环
6) generalized regular semiring
广义正则半环
1.
Semiring congruence on a class of generalized regular semiring;
一类广义正则半环上的半环同余的刻画
补充资料:正则环
正则环
*-regular ring
‘正则环卜一佣.山r对l招;一pe口朋钾Oe劝则。J 带有对合反自同构俐~“*的正则环(仰Nh助-姗愈义下的)(比州肚nllg(谊the别级侣e ofvon卜犯u-~”,使得戊扩=0蕴涵“二0二正则环的幂等元。称为一个投影算子(p咧戊tor),若。*二。.,正则环的每个左(右)理想由唯一的投影算子生成.这样可以谈到·正则环的投影算子的格.若格是完全的,则是一个连续几何(contjnuous罗。能好).一个有齐次基“t,…,a。(。)4)的有补模格(m团过肚妞-石ce)(亦见有补格(】atti优俪伍comPlemet出))是有正交补的格,当且仅当它同构于某个,正则环的投影算子的格.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条