1) dissipation integral
耗散积分
1.
A dissipation integral method is developed for calcalating compressible turbulentboundary layers on planar bodies.
发展了二维可压湍流边界层的耗散积分方法。
2) integrated dissipation inequality
积分耗散不等式
3) entransy dissipation
(火积)耗散
1.
In the present work,it is shown that the entransy dissipation theory avoids the conflict between the minimum entropy generation theorem and the conventional Fourier law,which demonstrates the apparent advantage of the entransy dissipation theory on its application to heat conduction problems.
本文首先说明(火积)耗散理论避免了最小熵产原理和傅里叶定律间的矛盾,显示了其在处理导热问题上的优越性。
4) cumulative dissipated energy
累积耗散能
1.
To cope with the fatigue cracking occurred to the asphalt mixture on steel deck pavement,it was put forward that the fatigue life of asphalt mixture can be improved by reducing the failure energy of each hysteresis loop of asphalt mixture according to the cumulative dissipated energy and hysteresis loop theory in the principle of viscoelasticity for asphalt mixture.
针对目前钢桥面铺装面层沥青混合料容易产生疲劳开裂的问题,根据沥青混合料粘弹原理中的累积耗散能和滞后环线理论,提出通过降低沥青混合料每次滞后环线的损失能量从而提高沥青混合料疲劳寿命的观点。
5) partly dissipative
部分耗散
1.
This paper deals with the large time behavior of the solutions of partly dissipative reaction diffusion equations on R~N.
主要致力于全欧氏空间上部分耗散反应扩散方程的解的长时间行为的研究,证明了该方程的紧吸引子的存在性,同时对该吸引子的正则性做了详细的研究。
2.
In2000 years, Bernal and Wang[17] acquired the existence about global attractors of partly dissipative reaction diffusion equation in unbounded domain of Hilbert space L2 ( R n )×L2 ( Rn).
在本硕士论文中,我们讨论了无穷维动力系统中和吸引子相关的一些问题,介绍了无穷维动力系统近几十年来的发展现状,具体考查了无界区域上的部分耗散反应扩散方程整体吸引子的存在性问题。
3.
Then we discuss in detail the long time behavior of solutions of the partly dissipative reaction-diffusion equations, and based on the existence of the compact attractor, we get some result concerning the regularity of the attractor.
这篇文章中,我们讨论了无穷维动力系统中和吸引子相关的一些问题,介绍了无穷维动力系统近几十年来的发展现状,而且具体考查了部分耗散反应扩散方程的解的长时间行为,在该方程的紧吸引子的存在性基础上,得到了该吸引子的正则性的一些结果。
6) water runoff-evaporation
水分散耗
补充资料:010耗散
分子式:
分子量:
CAS号:
性质:见010 损失。
分子量:
CAS号:
性质:见
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条