说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> T-型管流
1)  T-junction flows
T-型管流
2)  T-tube drainage
T型引流管
1.
Duct-to-duct biliary reconstruction without T-tube drainage in classic orthotopic liver transplantation;
不使用T型引流管胆管端端吻合在成人经典原位肝移植中的应用
3)  T-type drainage tube
T型引流管,胆管引流管
4)  T-tube conduction obstruction
T型管引流阻塞
1.
In this paper,based on the clinical observation for eleven cases of T-tube conduction obstruction after biliary tract operation.
本文通过对11例胆道术后T型管引流阻塞的临床观察,指出了胆道术后早期临床的注意事项。
5)  T-tube drainage
T管引流
1.
Choledochofiberscope the clinical application of T-tube drainage 507 cases reported;
纤维胆道镜应用于T管引流507例报告
2.
Reoperation of bile duct stricture after common bile duct exploration and T-tube drainage operation with clinical analysis 23 cases;
胆总管探查并T管引流术后胆管狭窄再手术23例临床分析
3.
Objective To study the causes and management of postoperative complications in patients with biliary tract exploration an T-tube drainage.
目的探讨胆道探查T管引流术后并发症发生的原因及其防治措施。
6)  T tube drainage
T管引流
1.
The interventional treatment for biliary recurrent obstruction after palliative T tube drainage in patients with obstruction due to cholangiocarcinoma;
胆管癌性阻塞姑息性T管引流术后再发梗阻的介入治疗
2.
[Objective] To evaluate the security and feasibility of endobiliary tube drainage substitute T tube drainage and primary closure of the common bile duct after laparoscopic common bile duct exploration.
目的探讨腹腔镜胆总管切开取石术后以胆道内置管引流代替T管引流的安全性和可行性。
3.
Objective To explore the clinical effect of laparoscopic cholecystectomy and T tube drainage(LCTD) through three holes.
目的 探讨三孔法腹腔镜胆总管切开探查、T管引流术的临床效果。
补充资料:管流
      管道中的流体运动。两千多年前人类已能大规模利用管道系统供水。现代更普遍使用管道输送各种液体、气体和复杂的混合物。根据管中流体的流动状态,管流可分为层性管流和湍性管流。
  
  液体层性管流 当雷诺数小于2000时,等截面直圆管中的液体流动是层性管流(这里ρ为液体密度;U 为等截面上的平均速度;μ、ν分别为液体的动力粘性系数和运动粘性系数;D为圆管内径),流动呈层状规则运动。
  
  对于圆管中的液体层性管流,19世纪G.H.L.哈根和J.-L.-M.泊肃叶已从实验归纳出流动规律,后来证实与精确解符合,故后人称之为泊肃叶流动。圆管截面上随r(图1)的速度分布为绕中心线的旋转抛物面,即
  
  
  
    式中Δp为管道长度L上的压力降(或压力损失)。因为压力沿管道长度降低,Δp为负,所以式中取负号。
  
  流量Q的公式为:
  
  
  
  
  。
  
  压力降Δp的公式为:
  
  
  
   。由流量公式可看出,在其他条件不变情况下,压力降增大一倍,流量也增大一倍;反之亦然。
  
  液体湍性管流 一般来说,当雷诺数达到2000~4000(临界区)时,液体层性管流会变得不稳定,并开始向湍性管流过渡。当雷诺数大于4000时,一般工业管道内的液体流动为过渡流或完全湍流。这时流动的能量损失和壁面摩擦阻力加大。由于湍性管流有相当大的径向动量交换,湍性管流的速度分布比层性管流均匀得多(图1)。
  
  液体湍性管流没有严格的理论分析方法,工程技术中通常采用半经验半理论公式和图表计算压头损失(能量损失)或流量。
  
  液体湍性管流的压头损失由达西-魏斯巴赫方程给出:
  
  
  
  
   式中hf为压头损失(米);L为管道长度(米);D为管道内径(米);U为平均速度(米/秒);g=9.81米/秒2;f为摩擦系数(无量纲),它是雷诺数Re和管道内壁相对粗糙度ε/D的函数,即
  
  
  
  
  
  
  
  f=f(Re,ε/D),
  式中ε为管道内壁的绝对粗糙度(米);Re=UD/ν(ν的单位为米2/秒)。这些函数关系由以下经验公式给出:
  
  在过渡区,
  
  
  
  
  在完全湍流区,
  
  
  
   。由上式看出,在完全湍流情况下摩擦系数仅与粗糙度有关,而同雷诺数无关。
  
  在层流区,
  
  
  
  
   f=64/Re。
  
  为了便于使用,L. F.穆迪将这些函数关系绘在一张以ε/D为参数,以f、Re为坐标轴的曲线图(称为穆迪图,见图2)上。
  
  图中湍性管流摩擦系数 f的下限为最下面的一条光滑管曲线,虚曲线为过渡区和完全湍流区的分界线。
  
  上述经验公式和穆迪图适用于各种工业管道中的液体流动。新的工业管道内壁的有效粗糙度见表。
  
  应用时,如果给定管道流量求压头损失,可以按如下步骤进行计算。首先通过水力试验测定管道内壁的有效粗糙度,算出雷诺数,根据穆迪图查出摩擦系数f,然后用达西-魏斯巴赫方程算出压头损失。由于尚缺乏测量管道粗糙度的满意方法,对粗糙管的摩擦系数的知识也不完善,这样的计算误差约±10%。
  
  管道截面的变化,阀门调节,管道方向变化和分支,都会引起压头的局部损失。但是,这些损失是次要的。工程计算中可将等效管道长度Le加到实际管道长度中加以考虑。
  
  最近实验发现,可溶性高分子聚合物具有很强的减阻作用。例如,在纯溶剂中加百万分之几(重量)的这种聚合物,可以使液体湍性管流的摩擦阻力降到纯溶剂摩擦阻力的四分之一。一般说来,任何具有线形结构的高分子物质(其分子量大于50000),都可使任何流体溶剂的湍流摩擦阻力降低。高分子减阻具有广泛的应用前景。
  
  气体湍性管流  对于气体(或蒸汽)湍性管流,如果压力降较小,气体密度变化可以忽略,其计算方法同液体湍性管流情形完全一样。如果气流的压力降大于10%初始压力,计算中则须考虑气体的密度变化、速度变化、密度同压力的状态方程或其他热力学关系式。
  
  在等温情形中,根据微分形式的达西-魏斯巴赫方程,可以导出如下压力公式:
  
  
  
   ,式中p1为初始绝对压力(千克力/米2,1千克力=9.8牛顿);p2为最终绝对压力(千克力/米2);Q为重量流量(千克力/秒);R为气体常数;T为热力学温度(开);A为圆管横截面积(米2)。摩擦系数f仍根据雷诺数Re和管道内壁相对粗糙度ε/D从穆迪图查出。在等温情形中,雷诺数沿管道长度不变。绝热条件下气体湍性管流的压力损失计算方法有所不同。
  
  在实际技术问题中,经常遇到管道中的多相流动,即流动介质包括气体、液体或固体中二相或二相以上的混合物。这些复杂管流主要依靠经验公式进行计算。
  
  

参考书目
   孙成彦编:《管渠水利计算概论》,中国建筑工业出版社,北京,1978。
   R.P. Benedict, Fundamentals of Pipe Flow, John Wiley & Sons,New York,1980.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条