1) generalized Frobenius norm
广义Frobenius范数
1.
The problem for robust H∞ control of two dimensional Roesser models with generalized Frobenius norm-bounded parameter uncertainties is discussed in this paper.
讨论了具有广义Frobenius范数有界参数不确定性的2-D Roesser模型的鲁棒H∞控制问题。
2.
By using generalized Frobenius norm and weak loop product of the quaternion matrices, a real-valued function for the quaternion matrices are established and its minimal value is simply expressed.
利用四元数矩阵的广义Frobenius范数和弱圈积,建立一个关于四元数矩阵的实函数并简洁表征其极小值。
3.
By using generalized Frobenius norm of the quaternion matrices, a real-valued function is established for the quaternion matrices, and discusses minimal value problem on its.
利用四元数矩阵的广义Frobenius范数建立一个关于四元数矩阵的实函数,并讨论了它的极值问题,然后在四元数矩阵方程AX+YA=C的一般解和自共轭解集合中分别导出了与给定相同类型矩阵的最佳逼近解的表达式。
2) Frobenius norm
Frobenius范数
1.
The Frobenius norm and its use;
Frobenius范数及其应用
2.
In this paper, disturbance boundary of unitary pole divisor is discussed with multiplicative disturbance in a sense of Frobenius norm.
本文研究酉极因子Q在乘法扰动下,对Frobenius范数下成立的扰动界。
3.
Meanwhile,by using unitary invariant property of Frobenius norm,the expression of the best approximation solution corresponding with given type of matrices are derived from the anti-centro-symmetry solutions set of this quaternion matrix equation.
利用四元数矩阵对的广义奇异值分解,讨论四元数矩阵方程AXB=C具有反中心对称解的充要条件,得到解的具体表达式,并应用Frobenius范数酉不变性,在该方程的反中心对称解集合中导出与给定相同类型矩阵的最佳逼近解的表达式。
3) Frobenius-norm
Frobenius-范数
4) generalized Orlicz norm
广义Orlicz范数
1.
Extreme points in Orlicz space equipped with the generalized Orlicz norm;
赋广义Orlicz范数的Orlicz空间的端点
2.
Strongly extreme points in Orlicz space equipped with the generalized Orlicz norm.
赋广义Orlicz范数的Orlicz空间的强端点
3.
Extreme and strongly extreme points in Orlicz sequence spaces equipped with the generalized Orlicz norm
赋广义Orlicz范数的Orlicz序列空间的端点和强端点
5) generalized Luxemburg norm
广义Luxemburg范数
1.
Generalized Orlicz norm and generalized Luxemburg norm;
广义Orlicz范数和广义Luxemburg范数
6) generalized N-norm
广义N范数
1.
Authors give the definitions of generalized N-norm,generalized N-generator,and generalized self-correlation on generalized interval.
称任意[a,b]区间为广义区间,在广义区间上给出了广义N范数、广义N性生成元、广义自相关系数的定义。
补充资料:Luxemburg范数
Luxemburg范数
Luxemburg nonn
L峨曰血叱范数〔I一血叱~;J如盆c服6yP住肋p-Ma] 函数 ,‘x!.(M,一、{*:*>o,丁、(,一’x(:))‘:‘1}, G这里M(u)是关于正的u递增的偶凸函数, 怒“一’M(u)一忽u(M(u))一,一0,对“>0,M(“)>0,且G是R”中的有界集.此范数的性质曾由W.A.J.h以油比飞〔11作了研究.L~b鸣范数等价于O正ez范数(见0口厄空间(C旧允2 sP创芜)),且 I{x}I(,)簇1 lx}I,蕊2 11 x 11(、).如果函数M(u)和N(u)是互补(或互为对偶)的(见O市口类(Or比zc地”‘、则 ,,·,,(一sun{)·(!,,‘!,“!:,,,,,《一‘,}·如果z‘(t)是可测子集E CG的特征函数,则 !l:二11‘M、-一下尖二一. ““启”‘川M一’(l/n篮‘E)’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条